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ABSTRACT 

 

MODELING INDIVIDUAL VARIABILITY IN GROWTH AND ITS IMPORTANCE: AN 

APPLICATION FOR LAKE TROUT (SALVELINUS NAMAYCUSH) IN LAKE SUPERIOR 

 

By 

 

Elizabeth Stebbins 

 

Correctly characterizing growth of fish within a population is a crucial component of fish 

biology and fishery management because, among other things, it informs population dynamics 

that affect management decisions. Size-at-age is a common metric of fish growth and is often 

measured at the population level with the assumption that, on average, all fish of a given age are 

a given size. Over time, several studies have shown that ignoring individual variability in growth 

can influence population parameter estimates and these inaccuracies can be propagated in 

population models that are used to calculate reference points for management. In the first chapter 

we develop a hierarchical, mixed-effects statistical growth model that measures individual 

variability in growth model parameters and partitions it into two sources. We fit this model to 

length-at-age data of lake trout (Salvelinus namaycush) from six populations in Lake Superior 

and show that individual-level variability exceeds population-level variability for this system, 

and persistent error contributes more to variability in length-at-age. In our second chapter, we 

simulate a population of fish and predict biological reference points, yield-per-recruit, and 

spawning stock biomass-per-recruit curves from the population using a ‘standard’ method that 

ignores individual variability and a ‘true’ method that accounts for size-selective mortality and 

its interaction with individual fish. We show that ignoring individual variability in these models 

results in overestimation of yield-per-recruit and the biological reference points F0.1 and FMAX. 

Further, spawning stock biomass-per-recruit is underestimated at low levels of fishing intensity 

and overestimated at high levels of fishing intensity when individual variability is ignored. 
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INTRODUCTION 

 

Fish growth within a population has a considerable influence on the dynamics of the system. For 

example, the size composition of a population – the distribution of fish sizes, sizes summarized 

by age, etc. – depends on how fast fish grow, how large they get, and how these parameters 

interact with processes like spatial and temporal variation or environmental stochasticity.  

Estimating fish growth rates is a complex process, typically requiring fitting statistical models to 

growth data and making assumptions about a growth function and error structure. Growth 

models often are incorporated into larger population models that provide information about stock 

status and condition, and thus sustainability of the stock, under exploitation by fishing. Correctly 

characterizing growth, then, is of major importance to both improving understanding of fishery 

systems and applications of modeling to fishery management.  

One key assumption often made when fitting growth models to length-at-age data from a fish 

population is that the mean length-at-age is representative of the population. More specifically, 

this assumes that the mean length of an age-a fish is true for all individual fish of age-a, and that 

estimation of average population parameters made with this assumption are true. However, 

individual fish vary in their growth, and ignoring individual variation in growth models has been 

shown to cause bias in estimation of population parameters, predictions of individual growth 

trajectories, and even estimation of biological reference points that inform management 

(DeAngelis et al., 1993; Kraak et al., 2019; Peacor et al., 2007; Pilling et al., 2002; Sainsbury, 

1980; Vincenzi et al., 2014). As an example, individual variation in size-at-age mediates how 

susceptible a fish is to mortality, especially when that source of mortality is size-dependent. 

Fishing gear is one way to regulate removal of fish from a population and is often size based: the 

mesh size of a gill net restricts what size of fish is caught by the net. Therefore, when a 
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population of fish is subjected to size-selective mortality, some individuals may be removed 

from the population at a different rate than others based on their growth. As such, these variable 

outcomes can have repercussions for estimates of abundance over time, projected harvest, and 

other population-level analyses. 

Estimating the magnitude and character of individual variability is one area of focus for 

improving growth models. Another area of interest is the source of the variation: there are two 

broad categories, referred to as persistent and transient [sensu (Webber & Thorson, 2016)]. 

Persistent variation stems from intrinsic differences in individual fish, like heritable traits, that 

affect how a fish grows over its entire lifespan. Transient variation, in contrast, is external and 

can stem from environmental conditions, year-to-year fluctuations, etc. Historically, it has been 

difficult to disentangle these sources of variation and in addition, measurement error can 

contribute to noise in growth data. If persistent variation is the dominant source, it could indicate 

that individual variation may be in some way heritable, potentially resulting in evolutionary 

consequences for a given population. If transient variation is the dominant source, it could 

support the importance of including environmental data in growth models.  

While incorporating individual variability improves the accuracy of growth models, it is also 

important to consider what the output of growth models are used for. One such application is a 

suite of models that calculate the total yield or spawning stock biomass an individual recruit (fish 

joining a population) will produce over its lifespan. These models, jointly termed per-recruit 

models, incorporate information about the average weight of fish at different ages (Quinn & 

Deriso, 1999), and are used to calculate biological reference points that are used in fishery 

management. There have been some studies on the influence of individual variability on these 

models and reference points, but it is still relatively unknown how these results might be 
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generally applicable. Further, while some focus on temporal, spatial, or environmental variability 

in growth (Lowerre-Barbieri et al., 1998; Miller et al., 2018; Parma & Deriso, 1990; You-Gan 

Wang & Thomas, 1995), it is rarer to find models that explicitly model persistent and transient 

individual variation. Thus, for any species under exploitation that is managed using per-recruit 

models, additional study is required to explore whether ignoring variation introduces bias that 

would impact the sustainable management of the stock.  

Lake trout (S. namaycush) are a top piscivore in the Laurentian Great Lakes and, in Lake 

Superior, have a history of low population levels due to aquatic invasive species as well as 

supplementation from stocked fish. Several population units of lake trout in Lake Superior fall 

under the 1838 treaty waters management framework and thus are evaluated regularly using a 

statistical catch-at-age model that uses mean weight-at-age. Lake trout are known to display 

individual variation in growth trajectories and thus are a good application for understanding how 

this could influence parameter estimates and the performance of per-recruit models.  

In this thesis, we build on a body of research that has been characterizing the effects of ignoring 

individual variation in growth models. In Chapter 1, we develop a statistical model that accounts 

for among-individual and among-population variability for six populations of lake trout 

(Salvelinus namaycush) in Lake Superior. We explain the model structure, assumptions therein, 

and provide estimates of individual variability for the system. We also simulate from the model 

to assess whether the estimated variation in growth is attributable to persistent or transient 

variation. In Chapter 2, we take the parameter estimates from Chapter 1 and simulate a 

population of fish displaying individual variability in growth parameters. We then subject this 

population to size-selective mortality and, using parameterizations from the existing 

management statistical catch-at-age model, evaluate the performance of ‘standard’ per-recruit 
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models (that ignore individual variability) and ‘true’ per-recruit models (that incorporate 

individual variability). Our study provides quantitative measures of the magnitude and direction 

of individual variability for this system, show that persistent error dominates much of this 

observed variation, and finally, show how spawning stock and yield estimates can be biased 

when the variation is ignored.   
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CHAPTER ONE: MODELING INDIVIDUAL VARIABILITY IN LAKE TROUT GROWTH 

 

AUTHORS 

 

Elizabeth Stebbins1 

James R. Bence1 

Travis O. Brenden1 

Michael J. Hansen1 

 
1Quantitative Fisheries Center, Michigan State University 

 

ABSTRACT  

Fish exhibit varying growth trajectories both within and among populations, which can interact 

with mortality to influence variation in size-at-age and population dynamics. Here, we developed 

and applied mixed-effects, hierarchical growth models with individual- and population-specific 

growth parameters to back-calculated length-at-age data from individual Lake Superior 

populations of lean morphotype lake trout (Salvelinus namaycush). Model estimates were used to 

simulate fish growth to determine to what extent variation in length at age was attributable to 

these sources. Models based on a von Bertalanffy growth function fit observed data better than 

those that assumed a biphasic growth function; variation in length-at-age for lean lake trout from 

Lake Superior was dominated by persistent sources of variation, which are intrinsic to the 

individual. Estimated among-individual variation exceeded estimated among-population 

variation in growth parameters. Implicit to our interpretation is the assumption that Lake 

Superior lake trout populations are not currently experiencing substantial size-selective 

mortality, such that estimated length-at-age patterns indeed reflect differences in growth rather 

than population-specific, size-selective mortality. This was deemed a reasonable assumption 

given the study system, but should be an important consideration in future applications of this 

type of modeling for other populations 
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INTRODUCTION 

The estimation of fish growth parameters is necessary for inferring the condition and dynamics 

of populations and can provide beneficial information for regulating fisheries that exploit them 

(Pauly, 1980). Growth, often represented as size-at-age, interacts with processes like size-

selective mortality and influences or reflects population age structure, health, and maturation 

rates within a system of interest (Ricker, 1969). Growth also reflects environmental conditions 

(e.g., prey availability) and is an important component in the development of fishery 

management objectives, such as size-based harvest regulations (Kristiansen and Svåsand, 1998). 

Many population models used by fishery managers to assess fishery exploitation levels, set 

management reference points, and evaluate harvest levels in relation to reference points, 

incorporate information about fish size at specific ages and model interactions between growth 

dynamics and other population-level processes (Quinn and Deriso, 1999). Because incorrectly 

characterizing growth can influence the output of these broader assessments, substantial efforts 

have been directed at growth modeling to more appropriately model growth in different systems.  

For example, the biphasic growth model accounts for shifts in energy allocation at sexual 

maturity and appears to better describe growth in some systems (Lester et al., 2004). 

A common assumption of population models is that mean size-at-age is representative of an age 

class; typically, there is no accounting for how individual growth variability affects variability in 

fish size at a given age even though this variability can be substantial (Pilling et al., 2002). 

Although ignoring variability in growth simplifies model structure, model results may be biased. 

Population-level processes like mortality are influenced by variation in size-at-age and individual 

variability in growth (DeAngelis et al., 1993; Peacor et al., 2007). For example, individual size 

mediates mortality for fishes through processes like predation or fishing (Hansen et al., 1997; 
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Tsehaye et al., 2014). Because growth informs models that are used in management, the 

circumstances under which individual growth variability can be ignored must be clarified. 

Relying only on mean size-at-age may introduce bias into the calculation of biological reference 

points that are foundational for certain management actions (Kraak et al., 2019; Punt et al., 

2006). Growth estimates calculated from mean size-at-age have also been found to be less 

accurate for predicting individual growth trajectories than those calculated from models that 

account for individual variation (Vincenzi et al., 2014). When growth models are fit to either 

length-at-age data using models assuming no among-individual variation in growth, the 

estimated model parameters and reconstructions of growth can be biased (Sainsbury, 1980). 

Therefore, accounting for individual variation when characterizing or making predictions about 

growth may improve the accuracy of estimates and subsequently any analyses based on those 

estimates. Studies incorporating among-individual variation in growth are limited worldwide, 

including in North America’s Laurentian Great Lakes region.  

Variation in size-at-age can be broadly categorized as transient or persistent. Persistent variation 

comes from individual-specific characteristics that influence how a fish grows over its lifespan, 

possibly stemming from heritable attributes or early-life environmental conditions that manifest 

over the course of the individual’s life. Transient variation stems from year- and individual-

specific differences in growth of a fish, potentially capturing environmental variation or year 

effects (Morrongiello et al., 2015; Pfister and Stevens, 2002; Webber and Thorson, 2016). An 

important characteristic of transient variation is that, because it is individual- and year-specific, it 

is not a direct corollary of year effects like those modeled in Weisberg et al. (Webber and 

Thorson, 2016; Weisberg et al., 2010).  Systems where among-individual growth variability is 

dominated by persistent variation may be more susceptible to processes like size-selective 
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mortality, such as a population that becomes dominated by slow-growing individuals due to 

selective harvest of faster-growing individuals (Biro and Post, 2008; Webber and Thorson, 

2016). Quantifying how persistent and transient components of growth variation contribute to 

observed variation in size-at-age can be challenging, but mixed-effects modeling offers a 

potential solution (Webber and Thorson 2016). For Antarctic toothfish (Dissostichus mawsoni), 

nearly half of the variation in length-at-age was attributable to transient variation (Webber and 

Thorson, 2016), with the rest allocated to observation error (persistent and sex-specific variation 

were not detected; Webber and Thorson, 2016). However, just because transient growth was the 

primary source of variation for this particular species does not mean persistent variation is never 

a significant source of variation in fish size at age.  In systems where persistent variation is 

dominant and is tied to heritability, evolutionary trajectories of the population could be affected 

(Biro and Post, 2008; Wolf and Weissing, 2012); additionally, the magnitude of persistent 

variation in growth could determine the extent to which size-selective mortality affects the size 

structure of the stock, and subsequently introduce bias into management reference points based 

on growth parameters (Parma and Deriso, 1990).  A key point here is that the characteristics of 

among individual variation in growth has importance in its own right, not merely as nuisance 

parameters that allow for better estimation of mean growth patterns.  While there are increasing 

applications of hierarchical growth models for fish, including lake trout that allow for among 

individual variation in growth (Chavarie et al., 2019, 2017; Hansen et al., 2016a), many of these 

do not actually report on the variance parameters, meaning the published literature provides 

limited understanding of the nature of growth variation. 

North America’s Laurentian Great Lakes are home to multiple fish species that are commercially 

and recreationally important. Most of the population assessment models used to manage Great 
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Lakes fisheries, like catch-at-age models, assume mean length-at-age is representative of the 

assessed population. Similarly, models that have calculated prey fish consumption in the Great 

Lakes have assumed that all fish at a given age were the same size (Tsehaye et al., 2014; He et 

al., 2015). The history of the Great Lakes ecosystem has been characterized by multiple 

invasions of aquatic nuisance species [e.g., sea lamprey (Petromyzon marinus); alewife (Alosa 

pseudoharengus)] that have drastically altered fish community composition. Historically, lake 

trout (Salvelinus namaycush) were the predominant piscivore throughout the Great Lakes, except 

Lake Erie, but their abundances were severely reduced due to sea lamprey predation, overfishing, 

declining water quality, and spawning habitat destruction (Hansen, 1999).  Beginning in the mid-

1900s, stocking was initiated by Great Lakes fishery agencies to rehabilitate or restore lake trout 

populations in each lake.  A wide number of lake trout strains were stocked to identify the strains 

most likely to restore self-sustaining populations.  To date, Lake Superior is the only Great Lake 

where lake trout rehabilitation efforts have successfully led to self-sustaining populations to the 

point where stocking has been deemed no longer needed (Muir et al., 2012).  Even though 

stocking is no longer conducted in Lake Superior, the genetic makeup of wild lake trout may 

reflect this complex stocking history (Muir et al., 2021). Lake trout in Lake Superior thus 

represent a case study of a population with a history of disturbance, low abundance, and 

rehabilitation efforts involving stocking fish with varied genetic composition. Measuring 

individual variability and understanding its sources could be an important addition to 

characterizing lake trout populations in Lake Superior.  

The aim of this study was to quantify the magnitude of among-individual variability in growth as 

well as the relative contribution of transient and persistent variation to lake trout in Lake 

Superior, with potential applications to other important fish species. We used a mixed-effects, 
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hierarchical model to estimate transient and persistent growth, among individuals and 

populations, for a length-at-age dataset of six populations of lake trout in Lake Superior. We also 

estimated correlation among growth parameters among individuals and populations. We build on 

a body of work that has used mixed-effects models to partition and estimate sources of 

variability in fish growth (Hart and Chute, 2009; Ogle et al., 2012; Vigliola and Meekan, 2009; 

Webber and Thorson, 2016; Weisberg et al., 2010). We hypothesized that a multivariate normal 

distribution for von Bertalanffy parameters (with necessarily positive parameters on the log-

scale) would account for greater variability than univariate (non-correlated) distributions, and 

that L∞ and K would be negatively correlated among populations and individuals. Further, we 

hypothesized that incorporating separate persistent and transient variation would allow us to 

understand their relative contribution to length-at-age for lake trout.  
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METHODS 

 

Data Collection 

Lake trout were collected from six populations in Lake Superior in 2002, 2003, 2004, 2006, 

2007, 2013, and 2014 (Figure 1). Sex, length, and weight assignment processes, as well as otolith 

processing, are as described in Hansen et al. (2016b). Four morphotypes of lake trout are 

generally recognized as existing in Lake Superior, but visual discrimination of these 

morphotypes can be unreliable, with the lean morphotype being the most reliably identified 

visually (Muir et al., 2014). To reduce uncertainty, only fish identified as lean morphotype trout 

were used in this analysis (n=410). After otoliths were cleaned, increment width for otolith 

annuli were measured. Length at age of each individual fish was back-calculated using the 

biological intercept model that assumes a linear relationship between otolith radius and fish 

length with a biologically determined intercept (Campana, 1990). Biological intercept values 

were obtained by fitting the biological intercept model to length- and otolith radius-at capture 

(Vigliola and Meekan, 2009).   

The von Bertalanffy Growth Model for an Individual Fish 

The aim of the hierarchical growth model was to estimate growth function parameters for each 

individual fish i belonging to population p. The von Bertalanffy growth model (VBGM) is the 

most commonly used growth model in fisheries science (Flinn and Midway, 2021). The Fabens 

(1965) parameterization of the VBGM was used to model growth increments as a function of L∞ 

= asymptotic length, K = Brody growth coefficient, and L1 = length at age 1: 

 

𝐿(1) = 𝐿1 
𝐿(𝑎) = 𝐿(𝑎 − 1) +  ΔL(𝑎 − 1) for 𝑎 ≥ 2 

ΔL(𝑎) = (𝐿∞ − 𝐿(𝑎) ∗ (1 − exp(−𝐾))  for 𝑎 ≥ 2 
 

 

 

(1.1) 

(1.2) 

(1.3) 
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That is, length at the start of the annual growth season for the first age L(1) is set equal to the 

estimated parameter L1 (Equation 1.1), with length at the start of the year for later ages 

increasing by an growth increment ΔL from the length at the start of the previous years (Equation 

1.2).  The  ΔLs depend upon length at the start of the year, L∞, and K (Equation 1.3). Variation 

among individuals in VBGM parameters (L∞, K, L1) constitutes persistent among-individual 

variation, and the hierarchical way we modeled this variation is described in the Hierarchical 

Model Structure Section.  Equation 1.3 was modified to allow for transient variation: 

ΔL(𝑎) = (𝐿∞ − 𝐿(𝑎)(1 − exp(−𝐾)) ∗ exp(𝛿(𝑎))     

 

(2) 

where 𝛿(𝑎) are log-scale age-specific process errors drawn separately for each year of growth 

(and separately for each individual) independently from a common normal distribution: 

𝛿(𝑎)~𝑁(
−𝜎𝛿

2

2
, 𝜎𝛿

2) 

 

(3) 

The expectation for the normally distributed log-scale process errors term is 
−𝜎𝛿

2

2
 rather than zero 

so that the expectation of the multiplicative process error exp(𝛿(𝑎)) is 1.0.  Formally, the 𝛿(𝑎) 

(for each growth year for each fish) are random effects.   

 

An issue with using equations 2 and 3 as a replacement for equation 1.3 is that an individual 

could exceed its individual asymptotic size following a year with a large positive 𝛿(𝑎), and thus 

need to shrink in the next year.  A simple fix to this issue would be to set the growth increment to 

(𝐿∞ − 𝐿(𝑎)) whenever this occurred.  This, however, causes estimation issues by making the 

model non-differentiable.  We implemented a differentiable approximation to this approach by 

setting the true growth increment equal to the weighted average of the right-hand side of 

Equation 2 and (L∞-L(a)), where the weights for the former and latter rapidly shift from 1 to 0 
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and from 0 to 1 respectively as the right-hand side of Equation 2 approaches and exceeds (L∞-

L(a)):  

ΔL(𝑎) = (𝑤2 ∗  Δ̂𝐿(𝑎)) ∗ (𝑤1 ∗ (𝐿∞ − 𝐿(𝑎)) (4.1) 

𝑤2 =  
1

1 − exp (−𝛼 ∗ (0.99 ∗ 𝐿∞ − (𝐿(𝑎) + (Δ̂𝐿(𝑎)))
 

 

 

(4.2) 

w1 = 1 − w2 
 

(4.3) 

ΔL̂(𝑎) = (𝐿∞ − 𝐿(𝑎))(1 − exp(−𝐾)) ∗ exp (𝛿(𝑎)) 
 

(4.4) 

We set 𝛼 equal to 2, selected to ensure the transition from one weight to the other was 

sufficiently steep to happen within a year. 

Hierarchical model structure 

Among-individual variability in the VBGM parameters was modeled using a hierarchical 

structure, so that in the second level mean values of log-scale parameters for each population 

{log 𝐿∞𝑝 , log 𝐾𝑝 , log 𝐿1𝑝
} varied around population-averaged means {log 𝐿∞∙∙ , log 𝐾∙∙ , log 𝐿1∙∙

} 

(Eq. 5.1), and in the first level the VBGM parameters for an individual 

{log 𝐿∞𝑝,𝑖, , log 𝐾𝑝,𝑖 , log 𝐿1𝑝,𝑖
 } varied around their population means (Eq. 5.2, Figure 2). 

Variation in both levels of the hierarchical model was assumed to follow a multivariate normal 

distribution, with level-specific variance-covariance matrices (Equations 5.1 & 5.2).: 

{log 𝐿∞𝑝 , log 𝐾𝑝 , log 𝐿1𝑝
} ~ 𝑀𝑉𝑁({log 𝐿∞.. , log 𝐾.. , log 𝐿1..

}, Σ..) (5.1) 

 

{log 𝐿∞𝑝,𝑖 , log 𝐾𝑝,𝑖 , log 𝐿1𝑝,𝑖
} ~ 𝑀𝑉𝑁 ({log 𝐿∞𝑝∙ , log 𝐾𝑝∙ , log 𝐿1𝑝∙

} , Σ𝑝) (5.2) 

 

Thus, persistent variation among all individuals was a consequence of variation in mean 

parameter values among populations and variation around these means within populations, 

because these influenced a fish’s growth trajectory over the course of its life.  Both population 
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means and values for each individual within a population of the VBGM were both random 

effects. 

Distribution of observed data 

The previous sections (The von Bertalanffy Growth Model for an individual fish and 

Hierarchical model structure) described how a fish was assumed to grow given its individual 

growth parameters and how those growth parameters varied among individuals and populations. 

Conditioned on the individual specific VBGM parameters and process errors, Equation 1 

produced what is assumed in the model to be the true sequence of lengths at age for each fish up 

to the time it was collected.  Observed lengths at age were assumed to have expectations equal to 

true lengths at age that followed a lognormal distribution: 

log �̃�(𝑎, 𝑝, 𝑖) ~𝑁(log(𝐿(𝑎, 𝑝, 𝑖)) −
𝜎𝜀

2

2
, 𝜎𝜀

2) 

 

 
(6) 

Equation 6 represents the incorporation of random observation error with a bias correction term 

of −
𝜎𝜀

2

2
 in the mean and a standard deviation of 𝜎𝜀

2 (Figure 3). 

Estimation 

Template Model Builder (TMB) was used for model fitting because it is designed for highly 

parameterized non-linear models with random effects. TMB uses C++ code and an R software 

interface to compile and implement automatic differentiation, integrating efficiently over random 

effects via Laplace approximation (Kristensen et al., 2016). A combination of fixed and random 

effects were estimated using maximum likelihood estimation (Table 1).  TMB provides options 

for efficiently parameterizing the variance-covariance matrices  ∑𝑝 and ∑∙∙ in the form of 

standard deviations for each parameter and a set of parameters that determines the correlations 

among them (Kristensen et al., 2022). 
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In preliminary efforts to fit the model, models that allowed all three random effects for the 

parameters to be correlated at both the individual and population level failed to converge. 

Consequently, parameterizations for which only two of the VBGM parameters were correlated, 

with the third being uncorrelated with the others within a level, or for all three parameters to be 

uncorrelated. Thus, combinations of a multivariate normal (all three VGBM parameters 

correlated), bivariate normal (just L∞ and K correlated), and univariate normal (all three VBGM 

parameters uncorrelated) were modeled.  A bivariate normal with L∞ and K did not consider L1 

in any bivariate normal case. L∞ and K represent a relationship between body size and speed of 

growth whereas L1 only represents the first year of growth. Several analyses have found L∞ and 

K to have a significant relationship, both positive and negative, which could either suggest that 

size ranks (i.e., larger fish grow faster, smaller fish grow slower) are maintained or not 

maintained (Vincenzi et al., 2014). The best-fitting model based on AIC was used for subsequent 

analyses. 

Quantification of Persistent vs. Transient Variation 

Estimates of variation and covariation provided information on persistent and transient variation. 

However, different variances contribute in different ways to total variation in observed lengths 

given age that is not readily evaluated by simply examining estimated parameters.  

Consequently, to translate parameter estimates into estimates of the relative contribution of 

persistent and transient variation (and observation error) into observed variation among fish in 

length at age, datasets based on fitted models were simulated for versions of models with some 

sources of variation removed.  Three cases were simulated: (1) a base case, with persistent and 

transient variation, (2) a case without transient variation, and (3) a case without persistent 

variation (Table 2). For each case, growth of 1,000 fish was simulated from ages 1 to 43 years 
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and the frequency distribution of length-at-age in simulated datasets was examined for selected 

ages.  By comparing the distributions of cases two and three, which represent systems with no 

transient error and no persistent error (respectively), to cases one and two, which represent 

systems with all sources of random error and no sources of random error except observation 

error (respectively), we determined how each type of error influenced variation in observed 

length-at-age.  

Alternative Models: Biphasic and Sex-Specific 

Criticisms of the VBGM include the parameters not being biologically interpretable and that it 

does not account for shifts in energy allocation when fish reach maturity, which may affect 

growth patterns (Lester et al., 2004). Lake trout are late maturing and long-lived, and some 

individuals in our sample potentially displayed biphasic growth, where immature growth was 

linear and growth after maturity followed a VBGM pattern (Figure 4). Therefore, models based 

on a Lester biphasic growth function (Lester et al., 2004) were evaluated, as well as versions of 

the VBGM applied to male and female lake trout data separately to test for sex-specific patterns 

(Supplementary materials). 
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RESULTS 

Estimation 

The model that best fit the data, Model D, assumed that individual log-scale growth parameters 

L∞, K, and L1 were distributed as multivariate normal, population-level means for log-scale L∞ 

and K were defined by a bivariate normal distribution, and log-scale L1 was distributed normally 

and was uncorrelated with L∞ and K. This model outperformed the next best model by 8 AIC 

units (Table 3). Because model D fit substantially better than the alternative models, detailed 

results were described only for this model, and it was used as the basis for quantification of 

persistent and transient variation. Persistent variation was greater for all three growth parameters 

at the individual level than at the population level (Figure 5).  

Growth model parameter estimates varied considerably among individuals after accounting for 

population-level variability (Table 4). Back-transformed (median) estimates [95% CIs] for 

population-averages for the VBGM parameters were 728 mm [633, 837] for asymptotic size, L∞, 

0.10 y-1 [0.08, 0.11] for the Brody growth coefficient, K, related to how fast asymptotic size was 

approached, and 106 mm [99, 112] for length at age 1, L1. Standard deviations of log-scale K 

were 0.13 [0.05, 0.36] at the population level and 0.33 [0.29, 0.38] at the individual level. 

Standard deviations of log-scale L∞ were 0.15 [0.08, 0.28] at the population level and 0.24 [0.22, 

0.26] at the individual level. Standard deviations of log-scale L1 were 0.06 [0.03, 0.13] at the 

population and 0.20 [0.18, 0.22] at the individual level. The standard deviation of observation 

error was 0.0004 [0.0003, 0.0007]. Finally, the estimated standard deviation due to process errors 

was 0.2346 [0.2254, 0.2441] (Table 4). For all parameters, estimated among-individual standard 

deviations were larger than estimated among-population standard deviations, but K differed the 

most between levels and L1 differed the least. At the individual level, the estimated standard 
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deviation for log-scale K was larger than that for log-scale L∞. At the individual level, log-scale 

L∞ and K were negative correlated (-0.78), log-scale L∞ and L1 were positively correlated (0.02), 

and log-scale K and L1 were positively correlated (0.21). At the population level, log scale means 

for L∞ and K were positively correlated (0.63). Correlations were opposite for population-level 

and individual-level relationships of L∞ and K. At the population level, L∞ and K were 

positively correlated (0.630) and at the individual level, negatively correlated (-0.78). 

Correlations between L1 and other VBGM parameters were not estimated at the population level, 

but at the individual level, L1 and L∞ were positively correlated (0.023) and L1 and K were 

positively correlated (0.213). 

Quantification of Persistent vs. Transient Variation 

Simulated distributions of length-at-ages 4, 15, and 40 were similar for the model with both 

persistent and transient errors (case one) and for the model with only persistent error (case two) 

(Figure 6). Density distributions for the model with only transient error (case three) were, for all 

ages, narrower than for models with both persistent and transient errors (case one) and for only 

persistent error (case two) but were very narrowly distributed around a mean of 714.9 mm 

(Figure 6, Table 5).  

Standard deviations of length-at-age for the case with both persistent and transient error, as well 

as just persistent (cases one and two) increased with age, but for the case with just transient error 

(case three) decreased. Going from age 15 to age 40, the variance in length-at-age for only 

transient error (case three) dropped from 16.59 to 3.46. Mean of age-specific distributions were 

relatively constant among cases, but not among ages (Table 5).  
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Alternative models 

Persistent and transient variation was difficult to estimate for the biphasic model and sex-specific 

VBGM growth function (see Supplementary materials), and did not suggest markedly different 

conclusions than were reached with the base VBGM.   
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DISCUSSION 

An implicit assumption we made in our model was that variation in observed size-at-age was not 

due to size-selective mortality, which can interact with growth (Ricker, 1969). Based on levels of 

mortality for lake trout in Lake Superior, we assumed that size-selective mortality was not 

sufficient over time to have substantially altered distributions of growth parameters of survivors 

(e.g., so fish with a relatively high L∞ or K were rarer at certain ages) (Lenart and Caroffino, 

2019). We found that among-individual variability in the VBGM parameters for a population of 

lake trout in Lake Superior exceeded the variability in population means for each parameter. 

These results suggested that lake trout, at least in Lake Superior, exhibited significant among-

individual variation in growth among fish collected from localized populations. Lake trout 

morphotypes exhibit variation in growth parameters across their range (Chavarie et al., 2017; 

Hansen et al., 2016a, 2016b, 2012). Some physiological traits that differ among lake trout 

morphotypes are heritable (Wellband et al., 2021), and morphotype to some extent determines 

growth parameter estimates. Our study focused on lean morphotype lake trout with location-

based populations but similarly shows a population-level effect on growth parameter estimates. 

This reflects the complexity of discerning the source of individual variation in growth 

parameters, especially for species like S. namaycush, where resource use as well as genetic 

differences could be contributing to persistent variation. Our model could easily be applied to 

datasets with additional populations from more than one lake. This would be particularly 

illuminating if done with lake trout to further elucidate whether our results were specific to Lake 

Superior or if variation within localized populations exceeds that of variation among populations 

across the species’ range.  
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Our study partitioned variation in growth into persistent and transient sources; however, 

disentangling intrinsic and extrinsic variation is not a novel concept – for example, recent 

approaches partition individual variation into similar categories (Stawitz et al., 2019, 2015; 

Thorson and Minte-Vera, 2016; Vincenzi et al., 2014; Weisberg et al., 2010). Our model treats 

transient (i.e., extrinsic) error as individual- and year-specific to explicitly model the effects of 

extrinsic sources on individual-specific variation from year-to-year. There are two key reasons to 

focus on understanding the magnitude and nature of persistent variation: if measured intrinsic 

variation were heritable it could have significant impacts on the evolutionary trajectory of a 

population and represent genetic diversity in a population (Biro and Post, 2008; Wolf and 

Weissing, 2012). In this case, estimating the magnitude could potentially be connected to the 

magnitude of evolutionary effects. Further, systems under exploitation where persistent variation 

is dominant could exhibit bias in length-based stock assessments and shifts in population 

structure (Parma and Deriso, 1990). Estimating the magnitude of persistent variation, and its 

relative contribution to individual variation in growth, across a range of populations, species, and 

locations, would further elucidate how persistent variation ties into these broader dynamics and 

help direct further inquiry.  With the development of a range of alternative models that allow for 

among individual variation as part of hierarchical analyses, models that account for among 

individual variation are being increasingly applied.  Unfortunately, often this variation is treated 

as being nuisance parameters so that in the majority of such applications the variance parameters 

are not even reported.  We urge the regular reporting of these variance parameters so that we can 

build up the information needed to better reach generalizations regarding growth variation. 

To understand the consequences of ignoring persistent (among-individual and among-

population) variation in growth, additional analysis is required, a topic we return to in Chapter 2. 



22 

 

Variability in fish size can interact with management analyses such as spawning stock biomass, 

wherein fisheries are managed to conserve some level of spawning stock in a population (Quinn 

and Deriso, 1999). The number of eggs deposited by a sexually mature female lake trout depends 

on the size of the female (Hansen et al., 2021), and individual large, fecund female fish play an 

important role in fish population dynamics (Hixon et al., 2014). Spawning stock biomass per-

recruit calculations often used to set fishing mortality reference points generally are calculated 

using mean size-at-age and assume that size selective fishing mortality will not influence these 

means (Caroffino and Lenart, 2000; Lenart and Caroffino, 2019). We demonstrated individual 

variability in growth of lake trout and showed that this variation was largely due to intrinsic 

differences in VBGM parameters, which could interact significantly with predictions of 

spawning stock biomass per recruit or similar mean weight-at-age-based analyses. 

For example, applying size-selective mortality specific to individual fish with different growth 

parameters and associated length-at-age schedules would allow us to understand how this 

influences population structure and potential evolutionary consequences. Allowing individuals to 

vary in their fishing mortality risk can significantly influence subsequent yield-per-recruit 

estimates, thereby suggesting that understanding individual-specific fishing vulnerability could 

be a productive line of inquiry for our model (Hart, 2001). Individual variability, modeled 

through individuals being assigned different growth parameters, interacted significantly with 

population dynamics through stock-recruitment functions, heritability, and different fishing 

regimes, thereby altering the distribution of growth parameters in later generations (Martínez-

Garmendia, 1998). Further, the potential risks of mischaracterizing age and size structure of 

populations due to incorrect simplifications are high for management (Punt et al., 2017; Webber 

and Thorson, 2016).  
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Log-scale variation in growth increments due to transient error had a standard deviation of 0.234, 

which suggests that external sources of variation from year-to-year influence how an individual 

grows. This magnitude cannot be directly compared to variation in the VBGM parameters that 

lead to persistent variation because they are on different time scales, and variation in VBGM 

parameters passes through the nonlinear growth model to produce variation in increments.  Our 

results contrast with another study that found transient error was important whereas persistent 

variation played little role in determining variation in length-at-age of Antarctic toothfish 

(Dissostichus mawsoni) (Webber and Thorson, 2016). This difference suggests that the role of 

different types of variation may depend upon specific characteristics of fish species and/or the 

surrounding environment, although too few examples exist to generalize. The nature of the study 

system may be important for the significance of our findings. Lake Superior is deeper and larger 

and on average shows lower interannual variability in surface temperature than the other Great 

Lakes. Similarly, temporal variability of the environment certainly differs among inland lakes.  

Applying our model to populations of lake trout in other lakes might improve understanding as 

to patterns of variability that uncover generalities and explanations for system specific results.   

The individual variation in L1, which we categorized as representing persistent variation, could 

also be interpreted as a combination of persistent and transient variation. The length at age 1 and 

variation thereof represents growth during just the first year, which could in some cases reflect 

conditions like density dependence, temperature, or other year-specific fluctuations. For 

example, density during the first year of life and year-of-birth effects were significant predictors 

of L∞ and K for two populations of Marble trout (Salmo marmoratus) (Vincenzi et al., 2014). 

Theoretically, density dependence or environmental conditions in the first year of life may have 

influenced our estimates of L1 variation, which we treated as persistent. In our model, no method 
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can separate L1 variation associated with growth over the lifespan (persistent variation) from 

what is associated with early life conditions. However, we saw no year-specific patterns in our 

estimates of transient variation across the dataset. The influence of initial length on persistent 

and transient growth variation may be too difficult to estimate accurately from common fisheries 

data like catch time series (Parma and Deriso, 1990). We believe our model can approximate the 

relative contribution of persistent and transient variability, although we acknowledge that lack of 

access to similar high quality data in other systems would limit the application of our method.  

We encountered convergence issues when we attempted to treat all three VBGM parameters as 

correlated on a multivariate lognormal distribution at both individual and population levels. We 

ultimately tested several different assumptions of correlation among growth parameters, both 

among individuals and among populations, to find the best-fitting model that converged. We 

encountered this issue with both the VBGM and biphasic model. The best fitting VBGM model 

treated L∞, K, and L1 as correlated among individuals, and only L∞ and K as correlated among 

populations. This suggests that data from this system did not support an assumption of 

correlation among all parameters at the population level. Past studies allowed one parameter to 

vary (James, 1991; Kimura et al., 1993; Kirkwood and Somers, 1984; Punt et al., 2006; Wang, 

1998), while other studies allowed L∞ and K to covary (Hart and Chute, 2009; Pilling et al., 

2002; Xiao, 1994; Zhang et al., 2009), but this correlation has been both positive and negative 

depending on the study system (Eveson et al., 2007; Ortiz de Zarate and Babcock, 2015). A 

positive correlation between L∞ and K may indicate that growing large early in life leads to 

larger asymptotic size, whereas a negative correlation may indicate an energetic tradeoff that 

reduces asymptotic size of individuals that grow large at an early age (Vincenzi et al., 2014). Our 

results suggest that covariation of L1 with L∞ and K was negligible at the population level, 
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although the relatively small number of populations in our study (six) and the associated lack of 

statistical power may have contributed to difficulties estimating among-population variation or 

covariation among VBGM parameters. At the individual level, however, we found that the 

correlation between L1 and K was an order of magnitude stronger than that of L1 and L∞. Our 

results suggest a positive relationship between L1 and K, but we are not aware of other studies 

that used L1 or allowed L1 to vary among individuals. However, further studies using a trivariate 

normal for VBGM parameters could shed light on whether this relationship is common among 

species or populations of lake trout. 

We found persistent individual- and population-level variability in growth of lake trout in Lake 

Superior and provided estimates of that variation and its sources. Our hierarchical model, based 

on a von Bertalanffy growth function, performed better than alternative models like the biphasic, 

which has been shown to work for lake trout. We were able to estimate measures of variability 

for all three von Bertalanffy parameters and their covariation and note that this variability is 

significant. We acknowledge that individual variability in growth, when ignored, can bias 

population-averaged parameter estimates and that this bias can be propagated into management 

reference points, although many models do not account for it. Our study develops a complex, 

hierarchical model that can be fit to data from multiple populations and presents measurements 

of spread for growth variation that can be helpful to those concerned with the Laurentian Great 

Lakes, but also to any system where individual variability is suspected.  
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SUPPLEMENTARY INFORMATION 

Alternative Models: Estimation 

We adapted a biphasic growth model that predicts growth as linear during the immature stage 

until an inflection point (intended to be age of maturity, represented by T), when growth switches 

to a VBGM curve. The model was developed by Quince et al. (2008a,b) and later promoted by 

Lester et al. (Lester et al., 2014; Quince et al., 2008a, 2008b). Our model grows an individual 

fish i at age a, beginning with length at age 1: 

𝐿(1, 𝑖) = 𝐿1𝑖 

 

(S1) 

Growth increments were calculated and added at each time step, like the base model (Equation 

S2).  

𝐿(𝑎, 𝑖) = 𝐿(𝑎 − 1, 𝑖) + ΔL(𝑎, 𝑖), 𝑎 > 1 
 

(S2) 

While fish were immature (a < T), the growth increment was dominated by linear growth and 

defined by hi, the average annual immature growth rate (S3). While the fish was mature (a ≥ T) 

the growth increment was dominated by VBGM growth (S4).  

Δ̇𝐿(𝑎, 𝑖) = ℎ𝑖 
 

(S3) 

Δ̈𝐿(𝑎, 𝑖) = (𝐿∞𝑖 − 𝐿(𝑎 − 1, 𝑖)(1 − exp(−𝐾𝑖)) 
 

(S4) 

To avoid the likelihood being a non-differentiable function of the inflection point T, growth 

changes gradually from linear to VBGM over a one-year period. This is achieved by modeling 

growth increments (S5) as a weighted sum of the linear and VBGM increments, with the weights 

(Equation S6 and Equation S7) summing to 1 and the weight for the linear increment going from 

near 1 to near 0 during the year of maturation. As a approaches T, the linear weight decreases 

according to a logistic function (Equation S6). 

Δ𝐿(𝑎, 𝑖) = (Δ̇𝐿(𝑎, 𝑖) ∗ 𝑤1 +  Δ̈𝐿(𝑎, 𝑖) ∗ 𝑤2) ∗ exp (𝛿(𝑎, 𝑖)) 
 

(S5) 
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𝑤1 =
1

1 + 𝑒𝑥𝑝(−3(𝑎𝑖 − 𝑇𝑖))
 

 

(S6) 

𝑤2 = 1 − 𝑤1 
 

(S7) 

  
The individual-specific parameters we modeled for the biphasic growth model were g, h, and L1, 

representing the ratio of energetic investment in gonads to somatic mass, the annual immature 

growth rate, and length at age 1 respectively (Lester et al., 2014). The individual-specific 

parameters gi and hi can be transformed into VBGM parameters 𝐿∞𝑖 (Equation S8) and 𝐾𝑖 

(Equation S9). 

𝐿∞𝑖 =
3ℎ𝑖

𝑔𝑖
 

 

(S8) 

𝐾𝑖 = ln (1 +
𝑔𝑖

3
) 

 

(S9) 

We modeled individual-specific values for T as a linear function of hi (Equation S10), 

incorporating a slope parameter as β.  

𝑇𝑖 = (𝛽 ∗ ℎ𝑖) 
 

(S10) 

We modeled g, h, and L1 on a lognormal scale using the same hierarchical structure as for the 

base model (Figure 2). Assumptions about the distribution of process errors and observation 

errors were the same as the base model, and similarly to the base model we assume that the 

population means and individual specific growth model parameters on a log-scale followed 

multivariate normal distributions:  

{log 𝑔𝑖 , log ℎ𝑖 , log 𝐿1𝑖
}~𝑀𝑉𝑁({log 𝑔𝑝 , log ℎ𝑝 , log 𝐿1𝑝

} , Σ𝑝) 

 

(S11) 

{log 𝑔𝑝 , log ℎ𝑝 , log 𝐿1𝑝
} ~𝑀𝑉𝑁({log 𝑔.. , log ℎ.. , log 𝐿1..

}, Σ..) 

 

(S12) 
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Alternative Models: Results 

The biphasic model produced estimates for all parameters when only among-individual variation 

was included in the model. When the second level of the hierarchical model, which models 

among-population variation for the three growth parameters, was included, the model failed to 

converge regardless of correlation structure for the growth parameters. This suggests that the 

data lack power to support among-population variation in the biphasic growth parameters. The 

biphasic growth model, when only among-individual variation between log-scale parameters was 

included, produced an AIC 1400 larger than the best-fitting VBGM model.  

We fit the VBGM to female and male lake trout separately. The model failed to converge when 

run with only female lake trout data, and this is likely not due to sample size (nF = 203, nM = 

205). When we subsampled the original dataset to include only males or only females, this also 

could have selectively pulled from certain populations, collection ages, etc., resulting in a dataset 

that had some populations represented significantly differently than in the combined-sex dataset. 

The male-specific VBGM model parameter estimates were similar to those of the combined-sex 

parameter estimates (Table 6). Specifically, the variances of the individual and population-level 

parameters only differed slightly. The estimated mean of the log L∞ parameter was smaller for 

male-specific model (706.27mm compared to 727.78mm), being the only major difference. The 

standard errors also showed negligible differences from the combined-sex model. Examination 

of both simulations from both biphasic model and the male-specific VBGM model showed that 

persistent variation contributed more to variation in length-at-age than did transient variation, 

supporting our results from the best-fitting VBGM model (Figures 7 and 8). 
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Alternative models: Discussion 

Our biphasic model failed to converge when among-population variation was included in the 

model. Quince et al. applied their biphasic model to lake trout data and succeeded in fitting it 

(Quince et al., 2008b). There are a few key differences between our model and the biphasic 

model developed by Quince et al. Ours is individual-based and allows for variation at the 

population level, which even for the VBGM caused issues with convergence, possibly out of 

overparameterization. We also calculated T, or age at maturity, as a linear function of h 

(immature growth rate). Long-lived, late-maturing species are good candidates for the biphasic 

model and particularly in the case of lake trout, where the biphasic model has been shown to 

outperform the VBGM (Quince et al., 2008b), it was necessary to consider. However, in this case 

the biphasic model was unable to support both among-individual and among-population 

variation where the VBGM was. The VBGM has additional benefits because of its long history 

of use across species and taxa, which allows us to compare parameter estimates across studies 

(Flinn and Midway, 2021). 

AIC values showed that a VBGM model with two levels fit better than a biphasic model with 

only among-individual variation. Further, the male-specific model did not estimate significantly 

different parameters compared to the combined-sex model. This suggests that the VBGM model 

is a better fit to the data. Certainly, in this instance the VBGM model is better suited to 

estimating parameters in a hierarchical framework to longitudinal data. To our knowledge there 

are few studies attempting to fit a biphasic model to individual growth data, and further attempts 

to do so would provide better information on whether the VBGM model better describes 

individual lake trout growth, or how much the quantity and structure of the data influence the 

comparison.  
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Both the biphasic and male-specific VBGM models showed persistent variation contributing 

more to variation in length-at-age in simulated datasets. This supports our earlier results and 

shows that they are not specific to the best fitting VBGM model, but also apply to alternative 

growth functions and a subset of the data. 
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APPENDIX A: TABLES AND FIGURES 

 

Table 1 

Parameter Symbol Description 

Observation Error 

SD 
𝜎𝜀 Observation error for length increments 

L∞ SD (individual) 

𝜎𝐿∞𝑖
 Standard deviation of individual-level 

multivariate lognormal distribution 

component for L∞ 

K SD (individual) 

𝜎𝐾𝑖
 Standard deviation of individual-level 

multivariate lognormal distribution 

component for K 

L1 SD (individual) 

𝜎𝐿1𝑖
 Standard deviation of individual-level 

multivariate lognormal distribution 

component for L1 

L∞ SD (population) 

𝜎𝐿∞𝑝
 Standard deviation of population-level 

bivariate lognormal distribution 

component for L∞ 

K SD (population) 

𝜎𝐾𝑝
 Standard deviation of population-level 

bivariate lognormal distribution 

component for K 

L1 SD (population) 
𝜎𝐿1𝑝

 Standard deviation of population-level 

lognormal distribution component for L1 

log L∞ mean 

(metapopulation) 

𝐿∞..
 Metapopulation (Lake Superior) mean for 

L∞, the von Bertalanffy parameter for 

asymptotic length 

log K mean 

(metapopulation) 
𝐾.. Metapopulation (Lake Superior) mean for 

K, the Brody growth coefficient 

log L1 mean 

(metapopulation) 

𝐿1..
 Metapopulation (Lake Superior) mean for 

L1, the von Bertalanffy parameter for 

length at age 1 

Process Error 

𝜎𝛿 Standard deviation for year- and age-

specific process error, here representing 

transient error 

Theta 1 
Ѳ1 Parameter used in determining correlation 

among individual log L∞ and log K means 

Theta 2 
Ѳ2 Parameter used in determining correlation 

among individual log L∞ and log L1 means 

Theta 3 
Ѳ3 Parameter used in determining correlation 

among individual log L1 and log K means 

Theta 4 
Ѳ4 Parameter used in determining correlation 

among population log L∞ and log K means 
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Table 1 (cont’d): Parameters defined and used in our von Bertalanffy model. Thetas 1-4 are the 

parameter used by TMB to create the correlation matrices for the multivariate and bivariate 

distributions: Thetas 1-3 are used in creating the matrix at the individual level and Theta 4 is 

used in the matrix at the population level. Estimates for the theta values are not individually 

interpretable and are thus not reported, but the correlations between parameters they calculate 

are reported in Table 4. 

 

Table 2 

Case Transient error 

(𝝈𝜹
𝟐) 

Persistent error 

∑ 𝑝 and ∑. . 

1 YES YES 

2 NO YES 

3 YES NO 

 

Table 2: Simulation cases and their assumptions of error structure. Case 1, our base case, and 

Case 4, serve as comparison for Cases 2 and 3, which represent regimes with or without 

persistent and transient variation. 

 

Table 3 

Model Individual-level distribution Population-level distribution AIC 

A BVN BVN -73133.2 

B UVN UVN  

C MVN MVN  

D MVN BVN -73180.5 

E BVN MVN  

F BVN UVN -73124.8 

G MVN UVN -73172.5 

H UVN MVN  

I UVN BVN  
 

Table 3: AIC values for models considering different underlying random effect distributions. 

AIC cells with a diagonal line and shading indicate the model did not converge. All models use 

the Fabens parametrization of the von Bertalanffy growth model. Here BVN = bivariate 

lognormal with L∞ and K, covarying and L1 uncorrelated; MVN = multivariate lognormal with 

L∞, K, and L1 covarying; UVN = univariate lognormal with L∞, K, and L1 all uncorrelated. 
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Table 4 

Parameter 

Symbol Estimate 

(log) 

Estimate 

(numerical) SE (log) CI LB CI UB 

Observation Error 𝜎𝜀 -7.74 0.0004 0.24 0.0003 0.0007 

L∞ deviations 

(individual) 
𝜎𝐿∞𝑖

 

-1.43 0.24 0.05 0.22 0.26 

K deviations 

(individual) 

𝜎𝐾𝑖
 

-1.1 0.33 0.07 0.29 0.38 

L1 deviations 

(individual) 
𝜎𝐿1𝑖

 
-1.61 0.2 0.04 0.18 0.22 

L∞ deviations 

(population) 
𝜎𝐿∞𝑝

 
-1.93 0.15 0.32 0.08 0.28 

K deviations 

(population) 
𝜎𝐾𝑝

 
-2.05 0.13 0.52 0.05 0.36 

L1 deviations 

(population) 
𝜎𝐿1𝑝

 
-2.8 0.06 0.38 0.03 0.13 

L∞ mean 

(metapopulation) 
𝐿∞..

 
6.59 727.78 0.07 632.7 837.15 

K mean 

(metapopulation) 
𝐾.. 

-2.34 0.1 0.07 0.08 0.11 

L1 mean 

(metapopulation) 
𝐿1..

 
4.66 105.64 0.03 99.48 112.17 

Process Error 𝜎𝛿 -1.45 0.23 0.01 0.23 0.24 

L∞ / K correlation 

(individual) 

 

 -0.778 0.118   

L∞ / L1 correlation 

(individual) 

 

 0.023 0.064   

K / L1 correlation 

(individual) 

 

 0.214 0.398   

L∞ / K correlation 

(population) 

 

 0.630 0.812   
 

Table 4: Parameter estimates for Model D, the best-fitting model to the data. All estimates are 

presented as standard deviation of the underlying distribution except the metapopulation means. 

Estimates are presented on the log scale they were estimated and back-transformed to the 

numerical scale. Confidence intervals were calculated as (ESTIMATE ± 2*SE ) for parameters 

estimated on the log scale and then the lower and upper bounds were back-transformed (by exp).  

Correlations were not estimated on a log scale but instead determined from estimated thetas, 

which are not individually interpretable. For correlations asymptotic standard errors were 

obtained by the delta method implemented in TMB. 
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Table 5 

Age Case Variation Mean SD 

4 1 Per + Trans 222.34 39.45 

4 2 Per 222.4 34.22 

4 3 Trans 219.5 19.09 

15 1 Per + Trans 565.5 88.93 

15 2 Per 565.7 87.49 

15 3 Trans 570.6 16.59 

40 1 Per + Trans 723.2 154.83 

40 2 Per 772 115.37 

40 3 Trans 714.9 3.46 

 

Table 5: Summary statistics of the frequency distribution of length-at-age for each case and each 

age (4, 15, and 40). 
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Table 6 

Parameter 
Estimate 

(log) 

Estimate 

(numerical) 

SE 

(log) 
CI LB CI UB 

Observation Error -7.18 0.0007617 0.21 0.0005005 0.0011592 

L∞ deviations 

(individual) 
-1.39 0.2490753 0.07 0.2165357 0.2865048 

K deviations 

(individual) 
-1.02 0.3605949 0.08 0.3072787 0.4231621 

L1 deviations 

(individual) 
-1.51 0.22091 0.05 0.1998876 0.2441433 

L∞ deviations 

(population) 
-1.94 0.1437039 0.36 0.0699482 0.2952302 

K deviations 

(population) 
-1.69 0.1845195 0.4 0.08291 0.4106558 

L1 deviations 

(population) 
-2.85 0.0578443 0.46 0.0230521 0.1451482 

L∞ mean 

(metapopulation) 
6.56 706.27169 0.07 614.00311 812.40583 

K mean 

(metapopulation) 
-2.29 0.1012665 0.09 0.0845849 0.121238 

L1 mean 

(metapopulation) 
4.65 104.58499 0.03 98.49443 111.05216 

Process Error -1.45 0.2345703 0.02 0.2253727 0.2441433 

L∞ / K correlation 

(individual) 
  -0.81 0.16     

L∞ / L1 correlation 

(individual) 
  -0.03 0.1     

K / L1 correlation 

(individual) 
  0.28 0.09     

L∞ / K correlation 

(population) 
  0.3 0.65     

 

Table 6: Parameter estimates for the male-specific VBGM model. 
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Figure 1: Location of the six populations of lake trout sampled from Lake Superior. 

 



38 

 

 

Figure 2: Structure of the hierarchical von Bertalanffy growth model. The second level 

represents Lake Superior-level log-scale means for each parameter. The second level represents 

population-level deviations, as random effects, for each parameter population (k=6). The third 

level represents individual-level deviations, as random effects, for each parameter and each 

individual (n=410). Finally, the individual- and population-level deviations are added to the 

metapopulation mean to create each individual’s growth parameters; these are then used to 

predict each individual’s growth trajectory. 
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Figure 3: Process error (transient variation) and observation error in the hierarchical model. 

Process error is age- and individual-specific, assumed to be normally distributed, and is 

multiplied by the predicted growth increment. Predicted length-at-age is considered to be true 

length-at-age. This true length-at-age is subjected to observation error, assumed to be normally 

distributed, to produce our observed length-at-age from the model. 

 

 

Figure 4: Biphasic growth. Individual growth trajectories that visually displayed what appeared 

to be a biphasic growth pattern (i.e. linear early growth and asymptotic growth after an 

inflection point). 
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Figure 5: Median estimates and 95% probability intervals for values of VBGM parameters.  

Among-population results show the probability intervals of population-specific estimates for L∞, 

K, and L1 around the meta-population medians. Among-individual results show the probability 

intervals of individual-specific estimates for L∞, K, and L1 around a selected example population 

mean (Grand Marais). Probability intervals were calculated using the back-transformed 

parameter estimate with the error bars equaling 2*standard deviation from that estimate. 
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Figure 6: Frequency distributions of length-at-age for ages 4, 15, and 40. Each simulation case is 

represented as a curve on the graph: Case 1 = base case (all variation), Case 2 = persistent 

variation and observation error, Case 3 = transient variation and observation error. 
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Figure 7: Frequency distributions of length-at-age for ages 4, 15, and 40 using the biphasic 

model. Each simulation case is represented as a curve on the graph: Case 1 = base case (all 

variation), Case 2 = persistent variation and observation error, Case 3 = transient variation and 

observation error. 
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Figure 8: Frequency distributions of length-at-age for ages 4, 15, and 40. This is the sex-specific 

model using only male lake trout. Each simulation case is represented as a curve on the graph: 

Case 1 = base case (all variation), Case 2 = persistent variation and observation error, Case 3 

= transient variation and observation error. 
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ABSTRACT 

Individual variability in fish growth is a well-documented phenomenon and several methods 

have been developed to understand its influence on estimates of population parameters in 

fisheries, showing that aggregating growth data by age can cause bias or inaccuracies in 

estimates. We developed a simulation framework to assess the effect of individual variability in 

growth on basic per-recruit models used in management. We applied our framework based on 

estimated parameters for a typical population of lake trout (Salvelinus namaycush) in Lake 

Superior. We use two approaches to calculate reference points: a ‘standard’ approach that 

assumes access to good data but ignores individual variability, and a ‘true’ approach that 

accounts for the interaction between size-selective mortality and growth variability for 

individuals. We show that the standard method consistently overestimates yield-per-recruit, 

especially at higher levels of instantaneous fishing mortality, compared to the true method. 

Further, the standard method underestimates spawning stock biomass-per-recruit at low levels of 

fishing intensity. Because of the differential biases as a function of fishing mortality, reference 

points based on the standard approach showed anti-conservative bias (i.e., suggesting a higher 

level of F could be sustained).  Therefore, ignoring growth variation could result in 
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mismanagement of stocks or risk. This study contributes to a body of work that attempts to 

understand the implications of individual variability in growth to management reference points 

and proposes a potential solution framework in the form of an individual-specific model. 
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INTRODUCTION 

Quantifying fish growth though the fitting of of fish growth modelsto size-at-age or length 

increment data is an important aspect of fishery science. Estimating growth parameters can 

inform population dynamics like mortality rates and consequently can be informative when it 

comes to setting management policies. Common growth models like the von Bertalanffy growth 

model (VBGM) and its various parameterizations can predict incremental growth (in length or in 

weight) over time and have been applied to a wide variety of fish species. In fishery science, the 

VBGM is by far the most common growth model and often is used to estimate population-level 

parameters, although it can also be used to model individual-specific growth so as long as 

informative data are available  (Flinn and Midway, 2021; Sainsbury, 1980). Estimating growth 

processes correctly is important because many of the biological reference points used in analyses 

like statistical catch-at-age models or per-recruit models require information about the weight at 

age of individuals throughout their lives (Quinn and Deriso, 1999a).  

Analyses that calculate the yield or reproductive potential of fish populations are commonly used 

to assess harvest potential of a population. These analyses determine the amount of harvest 

produced by an individual fish (yield-per-recruit) or the number of eggs or spawning stock 

produced by an individual fish (spawning stock biomass per-recruit) and can form the basis for 

calculating biological reference points that inform harvest regulations. A basic yield-per-recruit 

(YPR) or spawning stock biomass-per-recruit (SSBR) analysis incorporates information about 

growth (usually as mean weight-at-age of a harvested fish or mean weight-at-age at time of 

spawning), instantaneous fishing mortality F, size-selectivity of the gear used, natural mortality 

M, and probability of a fish being mature. With access to these data, analysts can calculate how 

yield or spawning biomass per recruitment will change with fishing, and metrics that implicitly 
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make assumptions about how recruitment will change, that inform on how the level of F may 

affect population demography, such as abundance and size structure.  

Basic YPR and SSBR analyses generally aggregate individual values into population means (for 

example, mean weight-at-age) (Quinn and Deriso, 1999a). Although aggregating individuals 

simplifies analyses, this also ignores the substantial variability that is frequently found in fish 

populations like that estimated in Chapter 1. According to Parma and Deriso (1990), per-recruit 

estimates can be biased if analyses do not account for the effects of individual variability and 

size-selective mortality on growth, though their analysis assumed the fishing season was short 

enough such that growth and natural mortality did not occur alongside fishing mortality, and 

based their model on parameter estimates from Pacific halibut (Hippoglossus stenolepis) (Parma 

and Deriso, 1990). Further, size-selective fishing or other sources of size-selective mortality can 

alter the size-structure of a stock by preferentially removing fast-growing, larger fish, resulting in 

slow-growing cohorts dominating the stock at higher ages. This result is termed the ‘Rosa Lee 

phenomenon’ (Lee, 1912) whereby back-calculated lengths at ages tend to be less than the length 

at age from fish captured at that age.  The effects of this on estimation of population parameters 

is generally thought to be significant (Kraak et al., 2019a; Ricker, 1969a). While the Rosa Lee 

phenomenon is not the focus of our study, it encapsulates the interaction between size-selective 

fishing mortality and individual variability in growth and how it might influence management 

policies for a population.  

A key input to basic YPR and SSBR analyses is the mean weight-at-age of fish in a stock. For 

our purposes, we focus on the discrete-time generic, or Bell-Thompson, method outlined in 

Quinn & Deriso (1999), though we acknowledge that there are more complex per-recruit models 

that can be modified to incorporate the effects of increased fishing intensity or other parameters 
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and we discuss this later (Quinn and Deriso, 1999b). By aggregating weight or length of 

individuals into average values for each age, an implicit assumption is made the average size at 

age represents growth of all individuals (i.e., that every individual has the same growth 

trajectory). The potential problem with this approach is that fish often show different growth 

trajectories within a population. Logically, a size-selective mortality factor (for example, gill nets 

that exclude fish below a certain size) would remove some individuals sooner than others 

depending on how fast the individual reaches the size of entry to the fishery, thus changing the 

distribution of growth characteristics of the survivors. When length-at-age is aggregated in a 

model, this nuance, and any subsequent effects on the probability of an individual fish being 

harvested or surviving, is not explicitly modeled.  

There have been several models developed to assess the interactions between individual 

variability, size-selective mortality, and per-recruit model calculations. Many of these models 

assume that this variability is due to intrinsic characteristics of the fish (persistent growth) as 

opposed to environmental conditions (transient growth) or a combination of the two (Kristiansen 

and Svåsand, 1998; Lowerre-Barbieri et al., 1998; Webber and Thorson, 2016). Parma & Deriso 

(1990) discuss the difficulty of disentangling the relative contribution of the two sources of 

variability, and our previous study presents one method for attempting to estimate them (Chapter 

1). Persistent growth can potentially interact significantly with fishing to alter size structure of 

populations, genetic composition, or evolutionary trajectories of a stock (Kuparinen et al., 2009; 

Wolf and Weissing, 2012). Relatedly, the effects of size-selective mortality and persistent 

growth variability on evolution of a fish stock have been studied but are generally not well 

understood (Martínez-Garmendia, 1998). In some cases, yield has been shown to be 

underestimated when individual variability is ignored (Kristiansen and Svåsand, 1998; Parma 
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and Deriso, 1990), but is highly dependent on fishing intensity. Estimates of spawning stock at a 

level of exploitation relative to unfished spawning stock have been shown to be overestimated 

when individual variability is ignored (Stawitz et al., 2019). Therefore, it is also important to 

consider how exploited the stock under question is.  Clearly, incorporating individual variability 

in growth when calculating biological reference points and yield- or spawning stock biomass 

models is important to consider explicitly, and is becoming easier with advances in modeling and 

increases in computational power.  

In a previous study, we developed a mixed-effects, hierarchical model to estimate the magnitude 

and characteristics of individual- and population-level variability in von Bertalanffy growth 

model parameters L∞ (asymptotic length), K (Brody growth coefficient, or how fast the fish 

reaches its asymptotic length), and L1 (length at age 1). Our analysis showed that individual- and 

population-level variability existed for these parameters and for some parameters this variability 

could be substantial (Chapter 1). Here we present an analysis that uses the parameter estimates 

obtained in the previous study to simulate the growth of individuals and, paired with size-

selective mortality and maturity patterns, their population dynamics. We then calculate observed 

values of YPR, SSBR, and biological reference points using a ‘standard’ approach based on 

mean size at age and other inputs obtained under a reference level of fishing and compare this 

with true values that take into account variation in growth among individuals and how this 

interacts with size selective fishing. We outline our approach, which uses different growth 

morphs to represent individual variability in growth (in a method similar to (Martínez-

Garmendia, 1998), below. We hypothesized that the standard approach using averaged sizes at 

age would differ from the true values, and that the magnitude of F would be an important 

determinant of the magnitude of difference in these values. Ultimately, our goal was to expand 
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knowledge about how size-selective mortality interacts with individual variability in growth and 

how this may be of interest to managers when setting harvest policies. 
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METHODS 

Overview 

We assessed the influence of growth variability, here represented by ‘growth morphs’ and their 

different growth trajectories, on per-recruit analyses. We allowed for variation in growth to 

interact with length-based selectivity and maturity functions, the former of which preferentially 

removes some growth morphs from the population. The basic idea underlying growth morphs is 

each morph represents the persistent characteristics associated with growth of a larger number of 

individuals with similar VBGM parameters, and our analysis accounted for how common the 

parameters associated with each growth morph was expected to be.  We simulated the growth of 

one individual (super-individual) for each growth morph.  While different individuals from the 

same growth morph will vary in their growth due to transient variation in growth, we showed in 

Chapter 1 that such transient growth was relatively unimportant in producing variation in size at 

age for lake trout in Lake Superior and thus believe using one super-individual to represent a 

growth morph is reasonable. In support of our decision to simulate only one individual we found 

very similar results with transient variation set to zero, showing that transient variation was 

having little influence However, if transient variation were expected to be more dominant, we 

would have considered modeling several fish per node. 

We simulated growth trajectories for 1000 fish, each representing a growth morph, using ten 

values of each of the VBGM parameters L∞, K and L1 in unique combinations (described 

below). We then grew each individual from age 1 to age 50 in daily growth increments and 

created individual-specific length-based selectivity and maturity schedules modeled using 

parameterizations for Lake Superior lake trout (Figure 9). This produced individual-specific time 

series in daily increments for length, weight, maturity, and selectivity. We combined these time 
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series with fully selected fishing mortality F and natural mortality M to identify the relative 

frequencies of each super-individual that survived to each day and used that to calculate the 

probability of each super-individual’s survival and probability of being harvested on a given day. 

With these data representing the “truth”, we then performed per-recruit analyses using a 

‘standard’ approach requiring average weight-at-age, proportion mature-at-age, and selectivity-

at-age, each in the form of annual values. To obtain these values, we assumed the analyst had 

good knowledge about the system and calculated weighted averages using each growth morph’s 

relative frequency expected by the multivariate normal distribution estimated in Chapter 1. We 

then analyzed the performance of the standard approach by comparing the per-recruit values and 

reference points calculated from them versus the true values that accounted for among individual 

variability. Parameters, their symbols, and their descriptions are explained below and can be 

referenced in Table 7. For all analyses we used R statistical software, version 4.0.2 (R Core 

Team, 2020).  

Individual variation in growth 

We assumed that individual fish grew according to a VBGM where the expected growth 

increment any given day was determined by the parameters, transient growth variation, and the 

starting length of a fish that day.  We used the standard VBGM parameters L∞ and K to 

represent asymptotic size and the Brody growth coefficient, but instead of t0, we used L1 (length 

of an age-1 fish at the beginning of day 1) because it is more biologically interpretable (Eq. 1).  

𝐿(1, 𝑖) = 𝐿1𝑖  (1) 

Persistent variability was simulated by allowing each growth morph to have a unique 

combination of growth parameters.  Our approach was to construct a three-dimensional grid of 

possible growth parameters (10 L∞ values x 10 K values x 10 L1 values), so 1000 growth 
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morphs. We assigned one individual fish (super-indvidual) to each growth morph. In the 

previous chapter we fit a hierarchical growth model describing the trivariate distribution of the 

VBGM parameters among individuals and obtained estimates of transient variation represented 

by a process error (Chapter 1). The parameter estimates describing the trivariate distribution was 

used at a later stage to weight the fish representing each growth morph to account for the 

expected differences in the frequencies of the different growth morphs. Depending on the 

estimated distribution of each VBGM parameter from the previous chapter (log-scale mean and 

standard deviation), we calculated the 10 values for each parameter by calculating the different 

quantiles given the other parameters were at their mean values. We used the hyper-population 

mean over populations as being representative of a typical population and the standard deviation 

for among-individual variation within a population as defining a typical distribution for 

parameters.  This was to ensure we evaluated a wide range of potential values encompassing the 

plausible growth morphs. The specific approach, which has some complexity, was merely one 

method to define a repeatable method for choosing values that spanned the range of plausible 

values.   

In particular, we used the mean and standard deviation for each parameter (on a log scale) to 

calculate 10 bins of equal probability for a parameter (conditional on the other log scale growth 

parameters being at their average values).  More specifically, we calculated the quantile values 

for probabilities 0.1 – 0.9, and these defined the 10 bins (with the lower bound of the first bin 

and upper bound of the last bin based on the quantiles for 0.01% and 0.999%). We then set for 

each growth parameter and bin an associated parameter value that was the mean for that 

parameter for that bin, based on the normal distribution for that log scale parameter (with other 

parameters at their mean values).   
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The log scale mean for each bin for each log scale parameter was calculated based on known 

results for truncated normal distributions (Burkardt, 2014) by:  

𝑚𝑝 =  𝜇 + 
𝜙(𝛼) − 𝜙(𝛽) 

𝛷(𝛽) − 𝛷(𝛼)
𝜎 

(2.1) 

with 𝛼 and 𝛽 calculated based on the lower (a) and upper (b) limits of the interval (i.e., the 

bounds calculated previously) (Eq. 2.1).  

𝛼 =
𝑎−𝜇

𝜎
  (2.2) 

𝛽 =  
𝑏 −𝜇

𝜎
  (2.3) 

and μ and σ the estimated mean and standard deviation for the log-scale parameters describing 

among individual variation in each parameter (taken from the estimation model).  Here 𝜙(𝛼) and 

𝜙(𝛽) are the probability densities of 𝛼 and 𝛽 given a standard normal distribution (mean of 0 

and standard deviation of 1), and 𝛷(𝛽) and 𝛷(𝛼) are the cumulative densities of 𝛼 and 𝛽 given a 

standard normal distribution. 

Simulated growth 

We simulated the growth of an individual fish I using one of the 1000 unique combinations of 

log scale VBGM parameters defined above (growth morphs). These morph-specific growth 

parameters influence the trajectory of a fish’s size-at-age over the course of its life, representing 

intrinsic persistent variation in growth. We started growth at age-1 and then calculated the 

expected growth increment for a day d using the Fabens parameterization of the VBGM (Fabens, 

1965) (Eq. 3.1). Individual fish from the same growth morph (i.e., with the same VBGM 

parameters) will follow somewhat different growth trajectories because of transient process 

growth variation.  As explained previously we simulated just one super-individual per growth 

morph. To model transient growth, which is external and year-to-year, we simulated process 

error as an individual- and year-specific error multiplied by the expected growth increment (Eq. 
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3.2). Because the error term is year-specific but applied to a daily increment, we divided the 

error term by 365 which assumes that the transient variability in growth occurs equally over all 

days of the year. 

ΔL(𝑑, 𝑖) = (𝐿∞𝑖 − 𝐿(𝑑 − 1, 𝑖)(1 − exp(−𝐾𝑖)) ∗
𝛿(𝑎,𝑖)

365
  (3.1) 

 

The process error is modeled on the log scale as normally distributed with a bias correction: 

log(𝛿(𝑎, 𝑖)) ~𝑁 (
−𝜎𝛿

2

2
, 𝜎𝛿

2) 
(3.2) 

For day 1 of an age-1 fish, we set an individual’s length to 𝐿1𝑖  (Eq. 1). For all days after day 1 (d 

> 1), length-at-day was calculated by adding the increment to the length at the previous day: 

𝐿(𝑑, 𝑖) = 𝐿(𝑑 − 1, 𝑖) + ΔL(𝑑, 𝑖), 𝑑 > 1 (3.3) 

 

To calculate weight as a function of length, we used an allometric relationship: 

𝑤 =  𝜆𝐿𝛽 (3.4) 

 

We obtained estimates of the weight-length parameters by regressing natural log weight (g) on 

log total length (mm) at time of capture for the same fish that provided the data used to fit the 

hierarchical model. This produced estimates of β (slope of regression) and 𝜆 (log intercept of 

regression) equal to 3.19 and 2.35e-06, respectively. We then compared these values to those 

calculated for Lake Huron (He et al., 2008) and Lake Michigan (Matthias, Bence, & Clark in 

prep) trout to ensure they were reasonable. For simplicity, we fixed β and 𝜆 for our simulations, 

but recognize that this has a significant impact on later yield and spawning stock biomass 

calculations.  
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Calculating weights (𝛾) for each growth morph 

After growing the 1000 growth morphs to age 50 we needed to calculate the probability of each 

growth morph’s existence in a realistic population. Because the 10 different values of each 

VBGM parameter were not equally likely to occur in a population (i.e., combination of some of 

the more extreme values were less likely to occur than those closer to the mean), we calculated 

the probability of observing each of the 1000 combinations of parameters. These were then used 

in later analyses to take the weighted average of metrics.  

Simulated selectivity and maturity schedules 

We modeled selectivity patterns and maturity schedules as simple logistic functions of length. 

For the lake trout gillnet fishery, a double-logistic selectivity function is often used (Lenart and 

Caroffino, 2019; Sitar and He, 2006). We used a simple logistic curve to induce simplicity in the 

model, and note that the selectivity function in this framework could easily be adapted to the 

specific pattern and gear type of the fishery (Kuparinen et al., 2009). For selectivity:  

𝑠𝑒𝑙𝐿,𝑑 =  
1

(1 + exp(−𝛼(𝐿𝑑 − 𝐿𝐸)))
 

(4) 

 

𝐿𝐸 is the length at age-of-entry to the fishery, which we set at 528 mm. For 𝛼, we used a value of 

0.02 (Bence et al., 2003). We applied the selectivity function to the length at each day over a 50-

year life span.   

The logistic maturity schedule was modeled as: 

𝑝𝑚𝑎𝑡𝐿,𝑑 =  
1

(1 + exp(−𝛽(𝐿𝑑 − 𝐿50)))
 

(5) 

For 𝐿50, we used a value of 558.08 mm and chose a value of 0.02 for 𝛽 which were obtained 

from the 1836 treaty waters Modeling Subcommittee stock assessment models for Lake Superior 
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length-based maturity schedule to reflect actual population models used for the system (Shawn 

Sitar, Michigan DNR, personal communication). This function was applied to the same length at 

each day for a fish that lived to 50 years as was done for selectivity.   

Calculations of age-specific averages from known data 

To assess the accuracy of a standard approach to individual variability represented by growth 

morphs, we made assumptions about the quality and type of data to which an analyst had access. 

For example, to calculate yield-per-recruit and spawning stock biomass-per-recruit using 

methods outlined in the discrete-time generic method, the analyst would need selectivity-at-age, 

proportion mature-at-age, average weight-at-age at time of harvest, and average weight-at-age at 

time of spawning (Quinn and Deriso, 1999b). We used a series of calculations to produce these 

age-based patterns from known simulated values for selectivity and maturity pattern in daily 

increments and daily length and weight increments.  

Total mortality, Z, was calculated using the selectivity-at-day pattern, a baseline annual fishing 

mortality F of 0.1 (that applies when selectivity is 1), and a baseline annual natural mortality M 

of 0.1 (that applied across all days). We multiplied total annual mortality Z by 
1

365
 to convert to a 

daily rate: 

𝑍𝑑,𝑖 =
1

365
(𝑠𝑒𝑙𝑑,𝑖 ∗ 𝐹 + 𝑀) 

(6.1) 

First, abundance per recruit at the beginning of each day was computed for each super-

individual. Recruits (abundance at the start of day 1) was set equal to 1, which means that 

abundance in each subsequent day was the abundance per initial recruit at the start of day 1.    

𝑁𝑑+1,𝑖 = 𝑁𝑑,𝑖 ∗ 𝑒(−𝑍𝑑,𝑖) (6.2) 
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This is equivalent to the probability of a fish being alive at the beginning of a day d. The 

probability of each super-individual I being harvested on a given day d was then computed as: 

𝑃(𝐻)𝑑,𝑖 =
𝐹𝑑,𝑖 ∗ (1 − 𝑒−𝑍𝑑,𝑖)

𝑍𝑑,𝑖
∗ 𝑁𝑑,𝑖 

(6.3) 

These values were used to calculate average values of abundance (𝑁𝑎), catch (𝐶𝑎), selectivity 

(𝑠𝑒𝑙𝑎), and proportion mature (𝑝𝑚𝑎𝑡𝑎) at age a. Abundance at age a, 𝑁𝑎, in years, was the 

abundance at the start of the first day of the year for that age. Thus, 𝑁𝑎 was calculated as the 

weighted average over growth morphs: 

𝑁𝑎 = ∑ 𝛾𝑖 ∗ 𝑃(𝐴)𝑎,𝑖

𝐼

𝑖

 
(6.4) 

 

Where 𝑃(𝐴)𝑎,𝑖 = 𝑁(𝑎−1)∗365+1 and I = the total number of growth morphs (I = 1000). To 

calculate the probability of observing a combination of VBGM parameters (𝛾), the estimated 

trivariate normal distribution for the VBGM parameter was used Chapter 1. Weights were the 

probability densities of each combination of {L∞, K, and L1} with multivariate normal means, 

standard deviations, and covariances, normalized to sum to 1.0 over all 1000 growth morphs.  

This effectively used a discretized version of the estimated distribution of growth parameters to 

describe the probability a given individual fish, in reality, would be from each of the 1000 

growth morphs. Probability densities were calculated used the dmvnorm function from the 

mvtnorm package in R (Genz et al., 2020). 

The total catch of age-a fish during a year for fish alive at the start of the first day of the year was 

computed as: 

𝐶𝑎 = ∑ 𝛾𝑖 ∗ ∑  𝑃(𝐻)𝑑,𝑖

𝑑=365(𝑎−1)+365

𝑑=365(𝑎−1)+1

𝐼

𝑖

 

(6.5) 
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We assumed the analyst had access to good 𝑁𝑎 and 𝐶𝑎 values, and therefore could infer a 

selectivity-at-age 𝑠𝑒𝑙𝑎 using the Baranov catch equation: 

𝐶𝑎 =
𝐹 ∗ 𝑠𝑒𝑙𝑎

𝐹 ∗ 𝑠𝑒𝑙𝑎 + 𝑀
 (1 − 𝑒−𝐹∗ 𝑠𝑒𝑙𝑎−𝑀)𝑁𝑎 

(6.6) 

By moving 𝐶𝑎 to the right side of this equation and solving for the root using an iterative search, 

the analyst would be able to obtain 𝑠𝑒𝑙𝑎 consistent with values of 𝐶𝑎 and 𝑁𝑎 .  The uniroot 

function from the stats package in R was used (R Core Team, 2020). We are not implying that 

actual analysts will generally obtain selectivity patterns in this way but rather that the best an 

analyst could do is have a good understanding of survival and catch produced per recruit and 

calculate selectivity by year of age to be consistent with that information. 

The final information needed for the analyst to implement standard YPR and SSBR analyses 

were average weight-at-age at harvest (𝑊𝑎𝐻
) and average weight-at-age at spawning (𝑊𝑎𝑠𝑝

). 

Weight-at-day was estimated for each growth morph (𝑊𝑑,𝑖) by applying Eq. 3.4 to length 

increments calculated for each growth morph. First, growth during a day was approximated by 

assuming geometric growth and average weight-at-day for a growth morph (�̅�𝑑,𝑖) as weight at 

midday: 

�̅�𝑑,𝑖 =  𝑊𝑑,𝑖 ∗ 𝑒𝐺𝑑,𝑖∗0.5 (7.1) 

Where 𝐺𝑑,𝑖 is: 

𝐺𝑑,𝑖 =  ln (
𝑊𝑑+1

𝑊𝑑
) 

(7.2) 

Using �̅�𝑑,𝑖, we calculated 𝑊𝑎𝐻
 using the following equation: 

𝑊𝑎𝐻
=

∑ 𝛾𝑖 ∗  𝑃(𝐻)𝑎,𝑖 ∗
∑ 𝑃(𝐻)𝑑,𝑖 ∗  𝑊𝑑,𝑖

̅̅ ̅̅ ̅𝑑=365(𝑎−1)+365
𝑑=365(𝑎−1)+1

∑ 𝑃(𝐻)𝑑,𝑖
𝑑=365(𝑎−1)+365
𝑑=365(𝑎−1)+1

𝐼
𝑖

∑ 𝛾𝑗 ∗ 𝑃(𝐻)𝑎,𝑖
𝐼
𝑗

 

(7.3) 

Where:  
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𝑃(𝐻)𝑎 = ∑ 𝑃(𝐻)𝑑

𝑑=365(𝑎−1)+365

𝑑=365(𝑎−1)+1

 

(7.4) 

This first calculates the average harvested weight (in g) of a growth morph for each age, 

weighted in proportion to the probability of harvest within the year.  

Average weight-at-age at spawning (𝑊𝑎𝑠𝑝
) was calculated using values from the day of spawning 

(day 304 of each year, so sp = 304, or October 31st): 

𝑊𝑎𝑠𝑝
=

∑ 𝛾𝑖 ∗  𝑃(𝐴)365(𝑎−1)+𝑠𝑝,𝑖 ∗  𝑊365(𝑎−1)+𝑠𝑝,𝑖
𝐼
𝑖

∑ 𝛾𝑗 ∗ 𝑃(𝐴)365(𝑎−1)+𝑠𝑝,𝑖
𝐼
𝑗

 
(7.5) 

The day of spawning was the same as the 1836 treaty waters Modeling Subcommittee stock 

assessment models for Lake Superior (Shawn Sitar, Michigan DNR, personal communication). 

For probability of being alive on the day of spawning within a year, weight at the start of the day 

on day of spawning was used, rather than weight at the middle of the day.  

Finally, average proportion-mature-at-age (𝑝𝑚𝑎𝑡𝑎) was calculated as: 

𝑝𝑚𝑎𝑡𝑎 =
∑ 𝛾𝑖 ∗  𝑃(𝐴)365(𝑎−1)+𝑠𝑝,𝑖 ∗  𝑝𝑚𝑎𝑡365(𝑎−1)+𝑠𝑢,𝑖

𝐼
𝑖

∑ 𝛾𝑗 ∗ 𝑃(𝐴)365(𝑎−1)+𝑠𝑝,𝑖
𝐼
𝑗

 
(7.6) 

 

This takes the average proportion mature for the day on which the maturity schedule was 

calculated (su = 227, or August 15th, also obtained from the modeling subcommittee models) in 

each year across individual growth morphs, weighted by a growth morph’s probability of being 

in the population (𝛾𝑖) and its probability of being alive on the day of spawning in a year. This 

calculation produces an average schedule of maturity for each age. 
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Yield-per-recruit analyses 

To create YPR curves, we calculated YPR for a series of values of F ranging from 0 to 2. For the 

standard approach, the discrete-time generic method was used (Quinn and Deriso, 1999a), as 

outlined in Eq. 8.1-8.6. First, 𝐹𝑎 was calculated using the estimated selectivity pattern 𝑠𝑒𝑙𝑎 and 

baseline fully selected fishing mortality F=0.1 (Eq. 8.1). Then, annual natural mortality was 

added to 𝐹𝑎 to obtain the total mortality rate 𝑍𝑎 (Eq. 8.2). Initial abundance was set to 1 to make 

the resulting calculations per-recruit. Abundance at ages above 1, 𝑁𝑎>1, were calculated using 

the exponential mortality model (Eq. 8.3), and the Baranov catch equation was used to obtain 

catch-at-age 𝐶𝑎 (Eq. 8.4). This was multiplied by the average weight-at-age during harvest, 𝑊𝑎𝐻
, 

to obtain yield (Eq. 8.5) and then was summed across all ages to calculate the total YPR (Eq. 

8.6).  

𝐹𝑎 = 𝐹 ∗  𝑠𝑒𝑙𝑎 (8.1) 

𝑍𝑎 =  𝐹𝑎 + 𝑀 (8.2) 

𝑁𝑎+1 = 𝑁𝑎 ∗ 𝑒−𝑍𝑎 (8.3) 

𝐶𝑎 =  
𝐹𝑎

𝑍𝑎
∗ 𝑁𝑎 ∗ (1 − 𝑒−𝑍𝑎) 

 

(8.4) 

𝑌𝑎 =  𝐶𝑎 ∗ 𝑊𝑎𝐻
  

(8.5) 

𝑌𝑃𝑅 =  ∑ 𝑌𝑎

50

𝑎=1

 
 

(8.6) 

True YPR that accounts for growth variability and size selective mortality was calculated using 

each super-individual’s probability of being alive and probability of harvest using Eq. 6.1-6.4 for 

a given value of 𝐹. To obtain yield for a super-individual, the probability of harvest on a given 

day (𝑃(𝐻)𝑑,𝑖) was multiplied by its weight on that day (�̅�𝑑,𝑖). These values were then summed 

for each growth morph across all days (getting the lifetime yield for a super-individual) and 
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weighted as the average of those results using each growth morph’s weight 𝛾. The YPR curves 

were plotted for comparison. 

Spawning stock biomass-per-recruit analyses 

To compare SSBR curves for each method, SSBR was calculated for the same series of F values 

used in YPR analyses. The standard approach to calculating SSBR was also based on the 

discrete-time generic method  (Quinn and Deriso, 1999). Abundance-at-age was calculated using 

Eq. 8.1-8.3, and for simplicity, we assumed all individuals were female. First, abundance-at-age 

on day of spawning, 𝑁𝑠𝑝,𝑎, was calculated by incorporating the proportion of the year that passed 

until day of spawning (0.833 is day 304 converted to years, obtained from the 1836 treaty waters 

Modeling Subcommittee stock assessment models for Lake Superior) (Eq. 9.1). Next, spawning 

stock biomass, SSBa, was calculated by multiplying  𝑁𝑠𝑝,𝑎 by the average weight-at-age on day 

of spawning (Eq. 7.5) and proportion mature-at-age on day of spawning (Eq. 7.6) (Eq. 9.2). 

Finally, SSBa was summed across all ages to obtain SSBR (Eq. 9.3).  

𝑁𝑠𝑝,𝑎 =  𝑁𝑎 ∗  𝑒− 0.833(𝑍𝑎) (9.1) 

𝑆𝑆𝐵𝑎 =  𝑁𝑠𝑝,𝑎 ∗ 𝑊𝑎𝑠𝑝
∗ 𝑃𝑚𝑎𝑡𝑠𝑝,𝑎 (9.2) 

𝑆𝑆𝐵𝑅 =  ∑ 𝑆𝑆𝐵𝑎

50

𝑎=1

 
 

(9.3) 

 

The true SSBR for a given F value was calculated using each super-individual’s probability of 

being alive on each day (Eq. 6.1-6.2). From this matrix the probability of being alive on the day 

of spawning was extracted for each year and individual. For each individual, weight at the 

beginning of the day of spawning (or 𝑊𝑑=𝑠𝑝,𝑖) and the probability of being mature on the day of 

the survey (August 15th) were extracted from maturity schedule parameters were calculated 

based on lengths at the time of that survey (Shawn Sitar, Michigan DNR, personal 
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communication). For each individual, the probability of being alive on day of spawning was 

multiplied by the weight on day of spawning and the probability of being mature, summed across 

each individual’s potential lifespan (to obtain an individual-specific SSBR value), and weighted 

using 𝛾. The SSBR curves were plotted for comparison. 

Reference points 

Reference points were calculated using standard and true approaches to YPR and SSBR.  The 

reference points included FMAX (the value of F that maximizes YPR), F0.1 (the value of F whose 

slope produces 10% of the YPR curve when F = 0), and FX% (the value for F that produces X% 

of the unfished SSBR for X = 35% and X=50%).  
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RESULTS 

Simulated growth 

Back-transformed midpoints of VBGM parameter distributions ranged over 480.0-1103.4 for 

L∞, 0.05-0.17 for K, and 74.6-149.6 for L1 (Figure 10, Table 8). Standardized weights (𝛾) for 

each growth morph ranged from 3.093e-12 to 4.457e-03} because some combinations of VBGM 

parameters were far more likely to occur in the Lake Superior system from which we obtained 

the distributional parameters. Different combinations produced very different growth curves for 

individuals and the interaction between growth and length-based selective mortality was evident 

in selectivity patterns. Fish representing growth morphs with low L∞ sometimes failed to reach 

full selectivity, whereas fish from growth morphs with higher L∞ values reached full selectivity 

before ~age 14 (Figure 11). 

Calculations of 𝑁𝑎, 𝐶𝑎, 𝑠𝑒𝑙𝑎, 𝑊𝑎𝐻
, 𝑊𝑎𝑠𝑝

, and 𝑝𝑚𝑎𝑡𝑎 

𝑁𝑎 started at 1 and decreased to an asymptote near 0 as age increased due to exponential 

mortality (Figure 12). By age 30, several population parameters reached an apparent asymptote: 

𝑁𝑎 decreased to ~0.0004 by age 50 and 𝐶𝑎 peaked at 0.0115 at a = 13 before. 𝐶𝑎was dome-

shaped and then decreased to near 0 as numbers of fish at higher ages that were large enough to 

be susceptible to fishing gear became scarcer (Figure 13). 𝐶𝑎 as a proportion of 𝑁𝑎 peaked at 

7.6% of 𝑁𝑎 at age 33 (Figure 14). Selectivity based on 𝑁𝑎 and 𝐶𝑎 reached an asymptote near 1 

around age 30 (Figure 15). Selectivity-at-age decreased at the highest ages, likely because the 

method used to calculate selectivity-at-age (Eq. 6) was not able to account for individual-specific 

selectivity for growth morphs. Average proportion mature-at-age peaked at 0.83 at age 34 

(Figure 16). Average weight-at-age increased to a maximum at 2851.4 g at age 44 before 



72 

 

decreasing slightly at the highest ages (Figure 17). This decrease at older ages is most likely due 

to the effects of size-selective removal of large fish earlier in their lifespans, resulting in the loss 

of fish with larger asymptotic lengths.  Similarly, average weight-at-age at time of spawning 

decreased slightly after a peak of 2579.5 g at age 39 (Figure 17). The calculated average 

proportion mature-at-age never reached 1 (all fish were not mature at any age). This is in part 

due to the parameters we used to characterize individual variability in growth and the maturity 

schedule: one of the 10 L∞ values used for the growth morphs was lower than the inflection 

point of the maturity schedule (𝐿50= 558.08 mm). 

Standard vs. true SSBR and YPR curves 

The YPR curves calculated with the standard approach predicted lower values than the true 

approach when F < 0.1, higher values when F > 0.1, and similar values when F = 0.1, where the 

analyst’s data for 𝐶𝑎 and 𝑊𝑎𝐻
 were calculated with a baseline mortality of F = 0.1 (Figure 18). 

As F increased above 0.1, the curves had similar shapes. At F = 0.5, 1.0, and 2.0, the standard 

method predicted YPR of 0.062, 0.082, and 0.092 kg higher than true values corresponding to 

119%, 126%, and 132% of the true values. 

The standard SSBR curve predicted lower SSBR for values of F < 0.35 (Figure 19). When F 

exceeded 0.35, the standard approach slightly overestimated SSBR. The standard method 

predicted SSBR 0.035 kg higher at F = 0.5 (114%), 0.043 kg higher at F = 1.0 (1185%), and 

0.019 kg higher at F = 2.0 than the true method (at F = 2.0, both methods predict numbers very 

close to 0). The two curves had different intercepts at F = 0 and the standard method predicted 

SSBR = 3.78 kg lower (67.4%) of the true method intercept = 5.61 kg.  
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Standard method estimates vs. true reference points 

All YPR-based biological reference points (BRPs) calculated by the standard method were 

overestimated (Table 9). The standard FMAX value exceeded the true value by 0.498, or 242%. 

The standard F0.1 estimates were closer, only exceeding the true value by 0.044, or 131%. Each 

of these YPR-based BRPs had higher YPR predicted for the standard method and exceeded the 

true YPR by 0.070 kg (122%) for FMAX and 0.039 kg (114%) for F0.1. 

At values lower than F = 0.35, the standard method underestimated SSBR by not accounting for 

individuals that matured quickly at younger age or reached greater weight at younger age than 

others. Biological reference points were 0.026 higher than the true values for F35% and 0.015 

higher for F50% (Figure 11). The standard method underestimated SSBR at low values of F, so 

reference points F35% and F50% produced SSBR values 67% lower than true SSBR.  
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DISCUSSION 

This study builds on a body of research investigating individual variability in growth and its 

effect on estimation in population models and management advice (Kraak et al., 2019b; 

Kristiansen and Svåsand, 1998; Lowerre-Barbieri et al., 1998; Parma and Deriso, 1990; Ricker, 

1969b; Stawitz et al., 2019). Size-selective mortality can preferentially remove faster growing 

individuals, and if unaccounted for, this could lead to underestimation of spawning stock 

biomass (Ricker, 1969a). Since then, others have shown that ignoring this variation in models 

can bias predictions of individual growth trajectories. Sainsbury (1980) found that most 

population models assume a mean value for size-at-age is representative of an age class, and this 

remains a common assumption. Models that do not account for individual variation can bias 

growth parameter estimates across multiple estimation methods (Pilling et al., 2002). Further, 

these biases can be propagated into stock assessment models or other models used to calculate 

management reference points (Parma and Deriso, 1990).  

Our model incorporated individual variability in growth by assuming that individuals varied in 

all three parameters of the von Bertalanffy growth model. Many studies generally focus on 

individual variability in L∞ and K, and rarely in the third parameter, which is often t0 (time when 

the organism length is 0) (Lowerre-Barbieri et al., 1998; Sainsbury, 1980; Shelton and Mangel, 

2012), although Martinez-Garmendia 1998 treated L∞, K, and L1 as varying among individuals 

(Martínez-Garmendia, 1998). Studies of individual variability have used length-frequency data 

(Wang and Ellis, 1998), tagging data (Kirkwood and Somers, 1984; Sainsbury, 1980; Wang and 

Thomas, 1995), and back-calculated increment data (Pilling et al., 2002). Back-calculation and 

its interaction with size-selective mortality can bias growth models and their interactions with 

population models (Ricker, 1969a; Schirripa and Trexler, 2000), though some of these effects 
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can be lessened by using a mixed model that treats longitudinal data as a random effect (Escati-

Peñaloza et al., 2010; Pilling et al., 2002). Our estimates of growth parameters from a study that 

treated individual deviations in length increments as random effects assumed that no serious 

biases were propagated forward from back-calculation (Chapter 1). 

Our study found bias in per-recruit model predictions when individual variability in growth and 

its interaction with size-selective mortality was ignored, which is substantial enough to 

meaningfully impact reference points. FX%-type reference points (where X represents the target 

or limit percentage of unfished biomass per recruit) have been used to determine whether 

estimated levels of mortality are too high given the life history of the fish (Gabriel and Mace, 

1999; Lenart and Caroffino, 2019). For example, managers using F35% as a limit fishing intensity 

are assuming that this reference point corresponds to a value of spawning stock biomass they 

wish to preserve (35% of the unfished SSBR). In our study, the standard method produced a 

value of F 25% greater than the true value; therefore, a manager using reference points 

calculated via the standard method has a biased perception of risk to the population and in the 

case outlined here would be recommending too high a fishing intensity for their target SSBR.  

Variability in growth, when ignored, causes overestimation of reference points like F0.1 and 

overestimation of SSBR and YPR (especially at higher levels of F), and that incorporating 

stochasticity in individual growth parameters reduces this bias (Lowerre-Barbieri et al., 1998; 

Parma and Deriso, 1990). We found that a standard method that ignored individual variability 

underestimated SSBR at low levels of F. This could be attributed to some individuals being 

larger and more likely to be mature faster than would be predicted with mean length-at-age 

models, thereby contributing to spawning stock by weight earlier than mean weight at age would 

predict. Further, average weight-at-spawning calculated in Eq. 7.5, which is used in the standard 
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method, results in lower weights across all ages than is actually the case under baseline mortality 

(Figure 20). The average proportion mature-at-age used in the standard method shows a dip at 

higher ages, which in the standard SSBR method resulted in fewer spawners with slightly lower 

weights, even at F = 0, because the standard method curves are based on “observed values” for 

selectivity and maturity for which there was an effect of fishing. Our model found that YPR and 

SSBR were overestimated when individual variability was ignored at higher levels of F. 

We modeled individual variability as consistent over the lifespan of individuals with no time-

varying parameters. Key differences between our model and the Parma & Deriso (1990) 

framework, which uses age and size distributions rather than individual growth trajectories, are 

in the sources of variation: their variability in growth was attributed entirely to environmental 

effects and allowed for parameters to change over time due to size-selective mortality. Further, 

they assumed that fishing mortality and natural mortality occurred at separate points during the 

year. Seasonal growth variability and individual produced higher YPR and egg production than 

without seasonal growth variability (Lowerre-Barbieri et al., 1998). Our model does not assume 

seasonality in growth, although lake trout growth, maturation, and habitat vary seasonally (Cline 

et al., 2013; Goetz et al., 2011; Kao et al., 2015; Lawrie, 1963; von Biela et al., 2021). Our 

growth model could be modified to incorporate seasonal variability (i.e., using an oscillating von 

Bertalanffy model), but was outside the scope of our analysis. However, several studies 

investigating individual variability in growth in per-recruit models have shown that temporal 

variability of growth parameters contributes to bias (Miller et al., 2018; Stawitz et al., 2019; 

You-Gan Wang and Thomas, 1995). The relative contribution of intrinsic growth variation 

(wherein the individual-specific parameters are constant across their lifespan) and extrinsic 

sources of variation (i.e., annual variability in temperature, environmental effects, etc.), also 
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referred to as persistent and transient variation [sensu (Webber and Thorson, 2016)], can be 

extremely difficult to estimate from standard fishery data (Parma and Deriso, 1990). The model 

from which we obtained our growth parameter distributions, and the growth model we used, 

incorporated both persistent and transient variability in the form of individual-specific growth 

parameters and a year- and individual-specific process error (Chapter 1). These parameter 

estimates suggested that for our study system, transient variability did not contribute as much to 

variation in length-at-age as persistent variation. The present study shows that persistent 

variation is substantial and, when ignored, can result in biased estimates of biological reference 

points and per-recruit model output.  

We focused on a basic formulation of a per-recruit model (Gabriel et al., 1989) and used life 

history parameters from Great Lakes lake trout statistical catch-at-age (SCAA) models 

(Caroffino and Lenart, 2000). Lake trout harvest policies in the Great Lakes incorporate output 

from such SCAA models, which currently use mean weight-at-age in the calculation of spawning 

stock (Shawn Sitar, Michigan DNR, personal communication). Though we do not perform a full 

assessment, our model simulated a Lake Superior population with growth variation based on 

estimates from that system and calculated reference points. Therefore, our results should be of 

interest to harvest policies or population models that are modeling, in any capacity, growth of 

lake trout or using metrics of growth like length- or weight-at-age. Our model, which 

incorporates individual variability in growth and its interaction with size-selective mortality, to 

calculate probabilities of survival and harvest, shows that YPR, SSBR, and biological reference 

points can be mis-estimated when individual variability is ignored. We recommend that 

managers who use these models in the Great Lakes, or similar models for different systems, 

consider either accounting for individual variability in growth (using our proposed model or one 
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of several other methods outlined above), or acknowledge the potential bias in reference points 

and prescribe conservative policy that accounts for the bias.  

Our methods have several limitations. To examine specifically the influence of individual 

variability in growth, we restricted uncertainty in other areas of the model and made several 

limiting assumptions. Firstly, we did not account for seasonality in lake trout growth and instead 

treated within-year growth as constant, although the influence of seasonality in growth for a 

slow-growing and long-lived species such as the lake trout may be less important. We allowed 

for year-to-year fluctuations when calculating growth increments via a random process error, but 

the standard deviation of that process error was small compared to VBGM parameter standard 

deviations. Secondly, we fixed background natural mortality at 0.1 as constant over time. This 

level of natural mortality seems reasonable for managed lake trout units in the Great Lakes 

(Lenart and Caroffino, 2019) but still carries implicit assumptions about conditions in Lake 

Superior for lake trout. While we assessed the impact of fishing mortality via selectivity curves 

and individual variation, we did not explicitly model mortality by the invasive Sea Lamprey 

(Petromyzon marinus), which has been found to be size-selective in predation (Bence et al., 

2003; Sitar and He, 2006). Given that sea lamprey attacks are generally believed to follow a 

logistic function and at larger sizes(Bence et al., 2003), it is plausible that the results from this 

study would apply to the consequences of changes in sea lamprey mortality even if fishing 

mortality stayed at a low level.  We also fixed the maturation schedule according to existing 

parameterizations used by management population models for Lake Superior lake trout, to limit 

uncertainty in other areas of the model. Variability in these areas could be incorporated into our 

framework, but the aim of this study was to demonstrate the bias that could exist in a simplified 

system with individual variability in growth and we were concerned about compromising our 
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ability to cleanly interpret results. The patterns modeled here, including growth function, 

maturation and selectivity patterns, and weight-length relationships, can be easily modified for 

different life histories and exploitation patterns. This said, we have no reason to believe that 

various complexities and increased realism would alter the fundamental result, that given the 

nature of among individual variation in growth in lean lake trout in Lake Superior, ignoring this 

variation has a real potential to bias management reference points and put fishery management 

objectives at risk. Our analysis also assumed that the analyst had access to accurate data for 

abundance-at-age, catch-at-age, and proportion mature-at-age, as a best-case scenario for the 

standard method. Some studies have found that bias caused by uncertainty in bad data can 

exceed bias caused by individual variability (Stawitz et al., 2019). We also simulated in daily 

increments, which offers a specificity in incremental data that may not be possible for temperate 

species like lake trout but could be helpful if applying this model to fish with shorter lifespans, 

like in tropical regions.  Fourthly, we assume a simple logistic selectivity pattern. The SCAA 

model used for lake trout in Lake Superior assumes a double logistic for gill nets, and thus 

depending on the type of fishery, dome-shaped selectivity may also be appropriate (Hansen et 

al., 1997). Our model framework could be modified to incorporate a more complex selectivity 

pattern, and this could have significant effects on results. Fifthly, values of L∞ we used meant 

that not all individuals reached maturity in their lifespans because of our choice of L50, and 

because this parameter was not linked to growth trajectories of individual growth nodes. This is 

highly unrealistic and must necessarily be modified before application of the model to 

management. One possible approach would be to assume that L50 and A50 lie on a “reactive 

norm” curve (Breck et al., 2020).  Past work for other species has suggested that slower growing 

fish mature at an older age but smaller size (Angilletta et al., 2004; Heino et al., 2002; Hutchings 
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and Jones, 1998; Shuter et al., 2016).  The reactive norm idea might feasibly allow the 

calculation of morph specific inflection points for the logistic maturity function. We also 

assumed that the standard approach to calculating spawning biomass per recruit would use 

weight at age based on all fish in the population.  Our experience is that this is what is often 

done, but an analyst could calculate weight at age only for mature fish for use in calculations of 

spawning biomass, which would remove some of the bias at low levels of F for spawning 

biomass per recruit estimates.  Finally, we fixed the exponent in our weight-length relationship at 

3.19 and the coefficient at 2.35e-06, both estimated from our dataset. However, the value of this 

exponent varies for lake trout across different regions in the Great Lakes (He et al., 2020; He and 

Bence, 2007). Changing the exponent and coefficient can significantly impact YPR and SSBR 

estimates, especially at higher lengths, and further work would need to assess sensitivity of our 

results to this variable. Our study is based on a model using one specific morphotype of lake 

trout (lean). Lake trout morphs can vary in habitat use and shape (Muir et al., 2014), as well as 

life history parameters (Hansen et al., 2016), so our results are only applicable to the lean 

morphotype.  

Despite these limitations, results showed that populations where significant variation in growth 

parameters has been measured can produce biased reference points and per-recruit calculations if 

this variability is ignored. Our analyses made assumptions about where variability is included, 

but showed overestimation of reference points, yield, and biomass, especially at higher levels of 

fishing intensity. Because our model simulates in daily time steps, it can be modified for fish 

with very short lifespans. Further, the choice of growth model can be easily changed depending 

on the focus of the study and other components (i.e., selectivity, maturity) can be modified to 

reflect conditions of the system. Ultimately, we showed that with lake trout in the Great Lakes, 
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models used for management may overestimate the potential of the stock and we recommend 

investigating the feasibility of incorporating individual variability into existing models. 
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APPENDIX B: TABLES AND FIGURES 

 

Table 7 

Name Symbol Description Units 

Assigning VBGM parameter values 

L infinity  L∞ VBGM parameter. Asymptotic length mm 

K  K 

VBGM parameter. Brody growth 

coefficient. 1/years 

L1  L1 VBGM parameter. Length at age 1 mm 

Midpoint mp 

Midpoint of each bin (10 total) within a 

VBGM parameter distribution mm 

Bin lower limit a 

Lower limit calculated for each bin (10 

total) within a VBGM parameter 

distribution mm 

Bin upper limit b 

Upper limit calculated for each bin (10 

total) within a VBGM parameter 

distribution mm 

Simulating growth 

Process error δ 

Individual- and age-specific process 

error   

Process error standard 

deviation σ_ δ 

Standard deviation of random variable 

δ, process error   

Increment ΔL Increment in length mm 

Weight-length relationship 

Body weight w Body weight of a fish kg 

Body length L Body length of a fish mm 

Weight-length coefficient λ 

Coefficient of weight-length 

relationship   

Weight-length exponent β Exponent of weight-length relationship   

Growth morph weighting 

Weighting factor γ 

Probability density function value for 

each growth morph's specific 

combination of VBGM, calculated using 

the estimated trivariate distribution from 

the previous chapter   
 

Table 7: Parameter and variable names, symbols, descriptions, and units (where appropriate). 
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Table 7 (cont’d) 

Selectivity Pattern 

Selectivity-at-length, day sel Selectivity-at-length, at a given time   

Length L 

Length of a fish on a given day, used to 

calculate its selectivity for that day mm 

Length-at-entry LE 

Length of a fish at entry to the fishery 

(inflection point in the logistic curve) mm 

Alpha α Slope of the logistic function   

Maturity pattern 

Probability of being mature-

at-length, day pmat_(L,d) 

Probability of being mature at-length, at 

a given time   

Length-at-day Ld 

Length of a fish on a given day, used to 

calculate its probability of being mature 

for that day mm 

L50 L50 

Length of a fish at which 50% are 

mature, or the inflection point for the 

logistic function mm 

Beta β Slope of the logistic function   

Population dynamics 

Instantaneous fishing 

mortality F Instantaneous fishing mortality    

Natural mortality M Natural mortality   

Total mortality Z Total mortality   

Abundance/Probability of 

being alive N or P(A) Abundance, or probability of being alive   

Probability of harvest P(H) Probability of being harvested   

Catch C Catch (in numbers)   

Average weight at midpoint 

of day �̅� Average weight at midpoint of day kg 

Growth G Geometric growth   

Weight-at-age at time of 

harvest Wa,H 

Average weight-at-age at time of 

harvest kg 

Weight-at-age at time of 

spawning Wa,sp 

Average weight-at-age at time of 

spawning kg 

Per-recruit models 

Yield Y Yield (in weight) kg 

Yield-per-recruit YPR 

Yield (in weight) produced over the life 

of an individual fish kg 

Spawning stock biomass SSB Spawning stock biomass (in weight) kg 

Spawning stock biomass-

per-recruit SSBR 

Spawning stock biomass (in weight) 

produced over the life of an individual 

fish kg 
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Table 7 (cont’d) 

Subscripts 

Day d Day of year   

Age/year a 

Age, or year (spanning 1:50 for this 

model)   

Individual i 

Sometimes j is used in weighted average 

calculations   

Day of spawning sp Day on which spawning occurs   

Day of summer survey su 

Day on which the summer survey 

occurs, creating parameters for maturity 

schedules   

Harvest H Denotes occurring on the day of harvest   

 

 

Table 8 

L infinity K L1 

Log 

scale Backtransformed 

Log 

scale Backtransformed 

Log 

scale Backtransformed 

6.17 480.02 -2.92 0.05 4.31 74.59 

6.34 566.77 -2.69 0.07 4.45 85.71 

6.43 618.86 -2.56 0.08 4.52 92.24 

6.50 663.47 -2.47 0.08 4.58 97.77 

6.56 706.16 -2.38 0.09 4.63 103.01 

6.62 750.06 -2.30 0.10 4.69 108.33 

6.68 798.32 -2.21 0.11 4.74 114.13 

6.75 855.87 -2.12 0.12 4.80 120.97 

6.84 934.53 -1.99 0.14 4.87 130.20 

7.01 1103.42 -1.76 0.17 5.01 149.60 

 

Table 8: von Bertalanffy parameter values used. 10 values of each von Bertalanffy parameter 

representing a range of potential values as estimated for Lake Superior lake trout. Values are 

presented on log scale and back-transformed. The 10 values of each parameter were combined 

into 1000 unique triplet nodes which we refer to as “growth morphs”. 
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Table 9 
Biological 

Reference 

Point 

True 

F 

Standard 

F 

Relative 

F Bias 

True 

YPR/SSBR 

Standard 

YPR/SSBR 

Relative 

YPR/SSBR 

bias 

FMAX 0.349 0.847 -1.425 0.321 0.392 -0.219 

F0.1 0.142 0.187 -0.312 0.285 0.324 -0.138 

F35% 0.107 0.133 -0.248 1.963 1.323 0.326 

F50% 0.064 0.080 -0.241 2.805 1.890 0.326 

 

Table 9: Biological reference points. Biological reference points (BRPs) calculated using 

standard and true methods. The value of F and the associated yield-per-recruit (YPR) or 

spawning stock biomass-per-recruit (SSBR) values are shown. Relative bias was calculated by 

subtracting the standard estimate from the true estimate and dividing by the true estimate. 
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Figure 9: Individual length-at-age of Lean Lake Trout. Individual length-at-age of lake trout 

back-calculated from ototlith data collected from n=410 individuals in Lake Superior. These 

data were used to estimate individual variability in growth. 
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Figure 10: Growth parameter values used to simulate growth morphs. Distribution of L∞, K, and 

L1 values using the estimated log-scale mean and numerical-scale standard deviation estimated 

in the previous chapter. Midpoints are shown in red dashed lines. 

 

 



89 

 

 

 

Figure 11: Individual-specific selectivity patterns and individual-specific growth patterns. 

Examples of super-individual-specific selectivity patterns and growth curves calculated using the 

individual’s length-at-day and the respective von Bertalanffy growth parameters. Standardized 

weights (probability of observing that growth morph’s von Bertalanffy parameters) of each 

growth morph (from top of legend to bottom) are 0.00445, 0.00053, 0.00076, and 0.00045. 
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Figure 12: Numbers-at-age. Numbers-at-age begin at 1, meaning values represent proportions, 

or per-recruit values. 

 

 

 

 

Figure 13: Catch-at-age. Catch-at-age per recruit calculated from simulated data.  
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Figure 14: Catch-at-age as a proportion of numbers-at-age (i.e., exploitation rate). 

 

 

Figure 15: Selectivity-at-age. Selectivity-at-age pattern calculated using catch-at-age per recruit 

and numbers-at-age per recruit assuming the analyst has good data.  
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Figure 16: Proportion mature-at-age. Average proportion mature-at-age calculated from 

simulated data. The curve never reaches 1 because some fish never reach the size of maturity 

due to the variability we used for L∞.   

 

 

Figure 17: Weight-at-age (spawning & harvest). Average weight-at-age at time of harvest (black) 

and at time of spawning (red) calculated from simulated data.  
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Figure 18: Estimated YPR curves. YPR curves, calculated using the standard method compared 

to true values. Vertical lines represent biological reference points FMAX and F0.1 calculated for 

the standard and true methods. 

 

Figure 19: Estimated SSBR curves. Standard method estimates and true SSBR curves with 

biological reference points with increased resolution. Vertical lines represent biological 

reference points F35% and F50% for both standard and true methods. The curves stay converged 

and get increasingly close at F > 0.3 to F = 2. 
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Figure 20: Average weight-at-age at different levels of F. Average weight-at-age at harvest, 

calculated as was done for the standard method for different levels of fishing intensity F. Colors 

represent different values of F. The standard methods use average weight-at-age calculated at a 

baseline level of mortality (F = 0.1), though as F changes the average weight-at-age declines.  
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