Soil Moisture Monitoring: Meeting Crop Need and Estimating Water Loss Out of the Root Zone

Michiana Irrigated Corn and Soybean Production Workshop
Shipshewana, Indiana
March, 5, 2019

Younsuk Dong, Steve Miller, Lyndon Kelly

Objective

Compare the different types of volumetric water content sensors at multiple soil depth. Sensor include Campbell Scientific, Sentek, METER Group, and Watermark Blocks.

Irrometer

Is the least expensive option and a handheld reading tool can measure soil water tension in multiple sites, but not continuously.

- **Tensiometer** measures the actual soil water tension, which indicates the effort required by root system to extract water from the soil.
- Watermark Soil Moisture Sensor is a solid state electrical resistance sensing device, which is another method to measure soil water tension.
- Watermark Monitor is a data logger that automatically reads and records up to 8 sensors at a selected interval.

Watermark Monitor

Handheld reading tool

METER Group

Is slightly more expensive, but it is easy to set up (plug and play) and operate.

• EC-5

- Low cost volumetric water content sensor, which is measured by dielectric constant of the media using capacitance/frequency domain technology.
- Affordable and ideal for large sensor networks.

10HS

- Temperature
- Large volume soil moisture sensor.
- Similar to EC-5 but better at averaging varying soil moisture.

Teros 12

- Measures volumetric water content.
- Robust steel needles for easy installation and better soil-sensor contact.

• EM 60G

- Remote monitoring system.
- Six sensor ports.
- Built-in solar panel and rechargeable battery.

EM 60G

Sentek

Measure volumetric water content at multiple depths, and is sensitive.

- Measures soil moisture every 4 inch up to 4 ft depth.
- Uses frequency domain reflectometry, which measures the soil dielectric by placing the soil between two electrical plates to form a capacitor.

Overview of system

EnviroSCAN

Campbell Scientific

- CS 616
 - Measures volumetric water content from 0% to saturation.
 - Is high accuracy and high precision (±2.5% volumetric water content)
 - Uses time-domain reflectometry, which means the speed of an electromagnetic signal passing through a material varies with the dielectric of the material.
- **CR 1000 data logger** collects and stores data and is reliable for extreme environment. This can be converted to a remote monitoring system with cellular modem and solar panel.

Overview of system

CR 1000 data logger

Cost comparison of soil moisture sensor systems

System	Single site with 5 sensors (\$)	Advantages	
IRROMETER handheld	\$440	It can be taken to multiple sites	
IRROMETER data logger	\$933	Continuous data collection, Rain gauge capable	
IRROMETER data logger cell	\$2,528	Continuous data collection, Rain gauge capable, Remote data accessible	
METER Group	\$1,071 - 1,621	Continuous data collection, Rain gauge capable	
METER Group cell	\$1,890 - 2,440	Continuous data collection, Rain gauge capable, Remote data accessible	
Campbell scientific	\$2,990	Continuous data collection, Rain gauge capable	
Campbell scientific cell	\$3,783	Continuous data collection, Rain gauge capable, Remote data accessible	
Sentek	\$2,609	Continuous data collection, Rain gauge capable, Read every 4 inches	
Sentek cell	\$3,059	Continuous data collection, Rain gauge capable, Remote data accessible, Read every 4 inches	

Southwest Michigan Research and Extension Center

Soil type

Depth	Sweet Corn		Tomato
	Subsurface Drip Irrigation	Surface Drip Irrigation	Subsurface Drip Irrigation
6 inch	Loamy Sand	Loamy Sand	Loamy Sand
12 inch	Loamy Sand	Loamy Sand	Loamy Sand
18 inch	Sand	Sand	Loamy Sand
24 inch	Sand	Sand	Loamy Sand
36 inch	Sand	Sand	

Sweet Corn – Campbell Scientific

Sweet Corn – Watermark

Rainfall

—6 inch —12 inch

_24 inch

—___36 inch

Example of data analysis

Sweet Corn – at 6 inch depth

Conclusion

- Selection of sensor system should consider purpose, sensitivity, and economic.
- Sensor calibration for specific site condition is recommended.
- Metergroup 10HS and EC-5, Sentek, and Campbell Scientific sensors are sensitive to measure the moisture content of soil.
- Watermark sensor is not as sensitive as other sensors, but it provides a general idea of the soil's moisture condition.
- Sensor can help improve the water use efficiency.

Low-cost soil moisture sensor system

- Remote monitoring system.
- Development of the system in on-going.
- Cost of a system (5 sensors) is around \$200.

Particle Electron

Soil moisture sensor

Example of cloud system

Water Use Efficiency using AquaCrop

Commerical Corn Sandy Loam 2010 Mendon Data FAO AquaCrop

Commerical Corn Sandy Loam 2010 Mendon Data FAO AquaCrop

Commerical Corn Sandy Loam 2010 Mendon Data FAO AquaCrop

Commerical Corn Sandy Loam 2012 Mendon Data FAO AquaCrop

Commercial Corn, 2012 Mendon MAWN, Silty Clay Loam, FAO AquaCrop

Commercial Corn, Mendon 2012 MAWN, Silty Clay Loam, FAO AquaCrop

Commercial Corn, Mendon MAWN, Silty Clay Loam FAO AquaCrop

