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FORECASTING MODELS: AN EVOLUTION IN DISGUISE

C. We Gellings
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, California 94304

Introduction

Almost before our very eyes, forecasting of energy services has entered a
new era. No longer are the composite needs of utility customers adequately
represented by forecasts of peak demand and total energy use. Two specific
developments have changed this. First is the economic necessity for greater
accuracy in forecasting, and second is the emerging potential of demand-side
planning. The latter is the concept by which utilities define strategic
institutional objectives in terms of their involvement in demand-side
activities, ranging from conservation and load management to electrification.

Addressing these two issues of more accurate forecasts and demand-side
planning requires a level of detail in prediction unimagined only a few years
ago. Hour-by-hour load shape forecasts are now necessary. Furthermore, the
end-use components of the load shape must be known in order to exercise
planning options and to determine, say, the extent of a conservation program
involving insulation financing or the most desirable rate of penetration of a
load management program involving control of water heaters. The author will
discuss this evolution and the types of models available today.

Such requirements have caused a virtual explosion of information needs.
These needs include greatly expanded load and consumer research activities
within utilities, as well as an increased need for utilities to reach out and
exchange methods, information, and data. The expanded information needed to
improve forecasting accuracy and load shape forecasting for demand-side
planning requires the use of computers capable of manipulating large load-
forecasting models. Some have criticized the industry for its continued and
semmingly blind reliance on computer-generated forecasts. They seem to have
missed the point. Forecasting remains an art only to the extent that the
science is not fully defined. Computers are a most necessary and helpful tool
to enhance the scientific aspects of forecasting and to mitigate the

uncertainties inherent in it. Their use serves to support the artistry of
judgment.

Straight-line extrapolations and simple regression analysis of historical
energy consumption trends that had served well enough for the years of steady
prices and steady growth became inadequate for many purposes with the onset of
inflation during the late 1960s. Nor could these simple techniques cope with

variations in growth rates among the different energy-consuming sectors of the
economy.

Fortunately, some within the utility industry had anticipated the need
for more sophisticated forecasting methods and were already at work on
approaches that, for example, loocked at demand and sales versus energy
prices. Explicit recognition that the demand for energy was also dependent on



other factors, such as income, weather, and the economy, lay behind the
serious efforts that began in the late 1960s to model those relationships as a
basis for forecasting. Modeling efforts accelerated when the Arab oil embargo
of the early 1970s brought a sharp break in historical patterns.

Clearly, knowing how much energy Americans had consumed in the past no
longer offered a simple linear guide to knowing what they would consume in the
future under drastically altered conditions of price and availability.

In addition, the need for greater accuracy in energy demand forecasting
is evidenced by the annual reduction in the North American Electric
Reliability Council's compilation of the 10-year forecasts of peak electric
energy demand in the conterminous United States illustrated in Figure I. This
departure from the historical trend has been caused by increased energy
prices, a general slowdown in the economy, and a reduction in energy use.

Figure I SUMMER PEAK DEMAND PROJECTIONS
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At the same time that forecasting grew more difficult, the consequences
of forecast errors grew more serious. In the past, overestimates of future
energy demand were quickly made right by demand growth, and the worst conse-
quence was temporary excess capacity that was soon absorbed. Underestimates
were not critical either, because turbine generators fired by cheap oil or gas
could plug the gap while new baseload plants were coming on-line,

Today all this has changed. B&An overestimate can lead to the authori-
zation of a baseload plant that may not be needed for several years, turning
it into a financial burden for the utility that must bear the costs without
offsetting revenues. An underestimate may be even worse, since it takes
8-10 years to license and build a coal-fired baseload plant and longer for a
nuclear plant. Meanwhile, meeting its load may force a utility to use oil- or
gas—-fired turbines that are now expensive to operate and no longer easy to
gain approval for, or to purchase similarly expensive power through pooling
arrangements with other utilities. If a condition of undercapacity is allowed
to exist, voltage reductions, localized brownouts, or even blackouts can
OCCUY,

The result is a bind for the utility planner. Squeezed between the dual
threats of over and undercapacity, the planner needs accurate forecasts more
than ever,



Modeling Activity

One popular method for end-use forecasting receiving a lot of attention
is called the engineering approach, which uses so-called physically based end-
use modeling. The focus is on the physical stock of energy-using equipment -
for example, the projected number of electric dishwashers in American homes.
Taking this number and multiplying it by a projected utilization rate yields a
forecast of total electricity use by home dishwashers. This figure is then
added to similarly derived figures for other major electrical appliances used
in the home, from air conditioners to electric ranges, to arrive at an aggre-
gated forecast of electricity use for the residential sector as a whole.

End-use engineering simulaton models are computer programs which began to
crop~up in the 1960s as promotional tools of utilities. Two prime examples
are the AXCESS program sponsored by the Edison Electric Institute and the
E3 program sponsored by the American Gas Association. Each of the programs
allowed physical simulation of commercial building energy requirements concen-
trating on heating, cooling, water heating requirements and including cogener-
ation evaluation.

In the early 1970s the same methodology adopted a somewhat different
appeal - conservation and load management had become a curiosity and evalua-
tion of individual alternatives were adopted through use of these models.
Now, in the 80s, they have become a valuable means to evaluate potential
technological alterntives for individual case studies. One serious short~
coming exists in their use - they ignore consumer behavior.

Figure II illustrates the generic elements of an engineering simulation
model. All energy related appliances, processes or systems (physical model)
can be depicted in a mass-balance relationship. 1In this relationship varous
levels of energy representing heat content or thermal energy, kientic/
potential energy or mechanical energy and raw energy in the form of hydro-
carbons are inputted to a system at some mass. Similarly, energy, mass and a
demand for electric energy are on output of this simulation.

Figure II
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The operation of the physical model is based on some simulation of
control, or on/off and intensity parameters. The simulation also depends on
production functions, or process models, which relate production to energy
requirements and environmental references such as weather and time to
performance.

As an example, if the simulation were for an airconditioning system used
in space cooling, the elements illustrated in Fiqure II would he as follows:

1) Enerqgy Input = reflects the thermal content of the air before it
passes over the evaporator coil.

2) Mass Input - reflects the volume and density of air before it moves
over the evaporator coil,

3) Simulation of Control - and system setpoints would reflect the
thermostat setting, including on-off, temperature and time-of-day
variations. The reaction of the thermostat in the physical model
would depict occupancy, internal heat gain and external heat gain.

4) Production Functions - model the energy requirements of the system as
a function of its thermal locading. The enthalpy of the air and its
volume passing over the evaporating coil determines the input to the
system, The ambient conditions surrounding the condensing coil are
also a factor which reflect the ability of the system to reject heat.

5) Environmental References - include weather and time variations which
determine heat gain over time.

6) Energy Output - reflects the thermal content of the air after it
passes over the evaporator coil.

7) Mass Output - reflects the volume and density of air after it leaves
the evaporator coil.

8) Load Shape -~ reflects the customer response or the demand for
electric energy required by the system including the demand by the
condensing fan, compressor, sump heater, defrost system, and evapo-
rating fan.

9) Physical Model -~ would simulate the behavior of the system in trying
to meet its set points.

A straightforward engineering approach that focuses only on physical
factors can miss the emergence of new end uses and miss some other very
important effects, such as the impact of rising energy prices as a stimulus to
conservation.

Consequently, a major trend in energy forecasting is the effort to
integrate into end-use models the behavioral element characteristic of what is
known as the econometric approach. A behavioral or econometric model of
electricity demand forecasts consumption in terms of consumer response to
economic variables, such as price and income. In this type of simulatien, it
is assumed that all consumer behavior can be represented by an econometric
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model. A wide choice of variables can be included in such a model, from local
employment levels to the gross national product.

Bringing together the physical factors and the behavioral factors in a
single model allows a more comprehensive grasp of the many diverse influences
that shape the demand for energy.

New Models

EPRI's Demand and Conservation Program has sponsored the development of
one of the first hybrid econometric end-use models to be used for forecasting
residential electricity demand. It is called REEPS, for residential end-use
energy planning system.

Consistent with the end-use approach, REEPS itemizes the major household
appliance activities, such as space heating and air conditioning. It predicts
both consumer appliance choices and energy consumption resulting from the use
of appliances. These appliance purchase and utilization decisions are related
to price and income variables, and the exact structure of these relationships
is estimated econometrically from individual household survey data. The ainm
is to capture the benefits of a forecast that is detailed down to the level of
individual appliance use without ignoring the important economic factors that
can be critical in shaping consumer behavior.

Figure IIT
RESIDENTIAL END-USE FORECASTING MODEL
Number of Average use of _ Total energy
appliances X appliances consumption
Number of Percent Intensity of | | , . /:\r\]/eragelz
occupied having appliance gp!ance “gyma
households appliances use etliciency etiiciency
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One of the innovative features of REEPS is the method used to develop
forecasts. Termed microsimulation, it involves simulating the behavior of a
representative sample of households for the particular region under study.
Each sample household is characterized by data on socioeconomic attributes
(eeg., family size, income), number and type of appliances, size and type of
dwelling, and the various geographic and economic features of the region.

Given this setting for decision making, the household makes its appliance
investment choices. These choices will depend on the household character-
istics already established, as well as on weather and energy prices. For
example, a high-income family is more likely than a low-income family to
purchase central air conditioning and living in a hot climate with relatively
low electricity prices will reinforce this choice,



The next step is to predict how much energy a household will use, given
its appliance stock. This amount will be the product of two distinct but
closely related decisions. The household first selects the appliance's
operating efficiency as part of the initial purchase decision. After the unit
is installed, modifying its efficiency may be difficult or impossible. But
household members can still decide how intensively to use the appliance, a
decision shaped by socioeconomic and geographic features of the household, as
well as by the operating costs of the appliance itself. When the efficiency
and utilization decisions are combined, the result is the amount of energy
that the appliance will consume.

Total consumption is forecast by multiplying the individual household
predictions by the relative frequency with which each household type occurs in
the population and adding the results. This composite picture of the full
spectrum of consuming households offers a far more richly detailed view of
energy consumption patterns than a forecast based simply on the homogenized
average household (as is the case in simple engineering approaches).

Because of this structural detail, REEPS is a powerful tool for examining
not only the total impact of increased prices or utility conservation programs
but also the impact on specific segments of the population. The model can
estimate not only how much energy is being consumed but who is consuming it
and for what purpose. Further, because the model combines the advantages of
the end-use and econometric approaches, it can assess both mandatory conser-
vation effects, such as those that are built into the efficient new
appliances, and the more elusive effects of conservation incentives, such as
federal tax breaks, that rely heavily on consumer choice.

Figure IV presents an analysis of residential electricity demand during
1975-81 using the REEPS model. This model combines econometric techniques
with end-use detail to develop a structurally detailed representation of resi-
dential electricity use drawing upon observed customer behavior and
engineering data. REEPS was used to answer two questions: (1) what would
residential demand have been if electricity prices and personal income had
grown over 1975-81 at historic rates and (2) what demand would have been if
income grew at the actual 1975-81 are but prices grew at historic rates.

REEPS ANALYSIS OF 1975-1981

Figure IV Residential Electrieity Demand
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The answer to the first question is that demand would have grown at an
annual rate of 5.4% versus the actual rate of 3.3%. The answer to the second
question indicates that if incomes had grown at the actual rate, demand growth
would have been lower, 4.8%. The implication of these variations in growth
rates is that in 1981 consumption would have been 830 billion kWh if both
incomes and prices had grown at historic rates, or 14% higher than the actual
725 billion kWh. In aggregate terms, the reduction in sales of 105 billion
corresponds to a reduction in needed capacity of approximately 20,000 MW. Of
this reduction in demand growth, about 2/3rd can be attributed to higher
prices and the remaining 1/3rd to lower incomes.

This illustrates total conservation which includes those actions stimu-
lated by utility intervention. Many of the papers at this Conference address
the extent to which utility conservation programs have encouraged these
actions.

Transferability of analyses and data from one utility service area to
another is being explored. For example, current work with time-of-day
electricity pricing is examining how consumer response to these rates varies
acrogss different areas of the country. If responsiveness turns out to be
about the same everywhere, or if the amount by which it is different depends
on certain measurable variables, the results of a study in one service area
can be applied (with adjustments if necessary) to planning decisions in
another. This can save utilities considerable effort and expense. Two other
projects already under way deal with transfer of data among utilities.

Time~of~day rate studies provide input to models that can forecast hourly
load shapes, and a model for forecasting hourly loads system-wide over the
long=-term is now nearing completion. Traditional practice has been to fore-
cast annual sales and peak loads separtately, then impose them on a suitable
historical load shape, modifying the load shape if necessary. Because of
recent discontinuities in historical patterns, though, such a forecast
procedure has not been well suited for applications involving rapid price
escalation or the emerging emphasis on conservation and load management.

In contrast, the new model builds an hourly load shape from the ground up
by the aggregation of projected end-use profiles, It is explicitly designed
to trace the implications of developments brought on by rising energy prices,
such as new energy management strategies and end-use technologies. The model
is also capable of accounting for the load shape impact of changes in socio-
demographic factors, economic activity, weather conditions, and the stock of
energy-using equipment.

The REEPS hybrid model and the new load shape model built on end-use
profiles are representative of the kind of work that is being done as modeling
grows more sophisticated.

Model Applications

How are the new modeling methods being used to address utility fore-
casting needsg?

The emphasis on forecasting detailed load shapes springs from the current
utility priority on demand management programs as an alternative to capacity



expansion and to improve finances. Part of the reason for this priority is
the current climate of financial and regulatory constraints surrounding
utility construction. Just as important, though, are continuing questions
about the pace and extent of long-term load growth.

Demand management is an emerging concept in utility planning the tools
and data for which are just now becoming available. Demand management entails
total resource planning. It requires looking at institutional goals--~
including improved cash flow, improved productivity, or improved stockholder
earnings and relating them to demand-side options. These goals have certain
restrictions such as regulation, laws, and environmental constraints. The
utility is further constrained by existing plant and facilities, financial
resources as well as plant under construction.

Figure V
DEMAND-SIDE PLANNING
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In demand-side planning, illustrated in Figure V, the utility planner
operationalizes goals by examining the existing plant. The process
subsequently includes considering potentially desirable load shape changes—the
key to demand-side planning-which could be brought about by demand management
in concert with supply~side alternatives. The potentially desirable load
shape changes can be any one of a number including three general categories.
First, the traditional load management options of peak shifting, valley
filling, and load shifting. Secondly, strategic conservation and third, load
growth or increased market share.

The demand impact of new electricty-based technologieg is another
question for the long-term. There is an emerging consensus that the U.S.
manufacturing sector will respond to lagging productivity and fossil fuel
supply uncertainties by a market-driven program of electrification. A major
gap in our understanding of the impact of this trend occurs with respect to
the indentification of the specific technologies likely to play a major
role., EPRI's Energy Management and Utilization Division has a subprogram in
place to address the hardware issues surrounding this new area. With its
help, a technical planning study is now under consideration to develop a
framework for analyzing which electrification technologies will be cost-
effective in industry. The long~term implications of a switch to electricity=-
kased technologies could be substantial.



In addition to these developments on the long~term forecasting scene, the
utility need for efficient cash management has created a stronger emphasis on
short-term forecasting. In the 1-12 month timeframe, the applications are
varied: When is the best time for scheduled maintenance? When should the new
stock or bond issue be released? On the other hand, in the 1-5 year time-
frame, the most important application is rate determination.

Using a forward test year rather than a historical test year can ease the
problem of regulatory lag. This practice of using forecasts instead of
historical data as a basis for ratemaking is becoming more and more common,
and a credible, accurate forecast helps in the acceptance of this approach. A
new short-term forecasting model still on the EPRI drawing board will offer
utilities a quantum jump in forecasting capability.

Four building blocks will go into creating the new model. The first will
be adjustment of anticipated sales for weather changes, especially seasonal
changes. The second will be data on the short-term impact of utility conser-
vation programs. The third will be input on short-term price and income
elasticities. And the fourth will be the use of innovative mathematical or
statistical tools known as adaptive time-series techniques for the analysis of
historical data on electricity use. These very powerful technigues are new in
their application to energy forecasting.

Where to Now?

The current activity in modeling covers a broad range of efforts dealing
with development of hybrid engineering/econometric end-use models, load shape
models and market saturation models. These activities will remain at the
cutting edge of our discipline for several more years. Several issues are
heginning to evolve which will demand considerable attention in the years to

come. Among them are commercial data needs, electrification and industrial
productivity.

Interest in the commercial sector has been prompted by conservation and
load management. Because of regulatory and political pressures as well as the
public-relations benefits, utilities have initially centered most all of their
activity in conservation and load management in the residential sector. Now
that planning and impelementation mechanisms are maturing, attention has
inevitably turned toward the commercial sector due primarily to the cost~
effectiveness and potential for load shape change at each location. As this
interest mounts, the lack of data on load shapes, vintage, population, size,
level of business activity and other customer characteristics has become
evident, Efforts will be mounted either by individual utilities or by a
consortium of utilities to begin obtaining commercial data. Analysis and
modeling activities will follow this.

Electrification or the concept of substituting electrical energy for
processes previously energized by fossil fuels or for less energy intense
processes so as to improve productivity and restore the cost and technology
advantage of Bmerican industry is an important national issue. Modeling
activities have been underway at some level in this area. However, a renewed
higher level interest has begun due to the "sunset" vintage of many U.S.
industrial facilities. The issues include what utilities and requlators can

do to stimulate the energy marketplace so as to accelerate cost-effective
electrification.



A number of complex issues are present in relating electrification,
productivity and forecasts of world and U.S. industrial activities. Some of
these include:

1) The availability of data on U.S. and world industries and modeling
world product markets.

2) The deployment of the technologies already developed and the market
penetration what they might achieve.

3) The development of new technologies and predicting their
characteristics, costs and introduction,

4) Determining to what extent utility intervention will effect the
above,

There is a practical limit to the gquantity of data that is cost-effective
to gather and manipulate in terms of the additional insight gained by the
utility planner. Wew techniques are under study to reduce the amount of data
required for a given level of accuracy, as well as to reduce the level of
detail required in the ultimate forecast. The problems of forecasting and the
needs for information are well documented. The industry is hard at work to
develop tools, data, and techniques for accommodating these informational
needs and to help utilities meet them in a reasonable, reliable, cost-
effective manner.,

The electrical industry has come a long way in elevating the sophistica-
tion and accuracy of models. These efforts have done a great deal to turn the
art and science of forecasting into more of a science and less of an art.
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PAST, PRESENT, AND FUTURE ROLES OF A NATIONAL LABORATORY
IN CAPACITY PLANNING

Daniel M, Hamblin
Osk Ridge National Laboratory
Currently on Assignment to the Bonneville Power Administration

I. Introduction

Oak Ridge National Laboratory is currently celebrating its fortieth year
of existence. In describing the state of the laboratory at the inception of
its fortieth year, Laboratory Director, Herman Postma characterized
Washington's mandate for long-range, high-risk, high-payoff research and
development as representing a "return to traditiom'" for Oak Ridge. Those of
us involved in the "not-so-hard" sciences have felt internal and external
pressure to demonstrate that our research endeavors and proposals for
endeavors have not been frivolously misdirected toward short-range, low-risk,
low-payoff work. In some ways, our role in capacity planning has been
distinctly nontraditional for the laboratory--in that its genesis was as part
of a diversification out of long-term "hard-science' atomic research. That
genesis occurred as part of a two-decade laboratory diversification process,
from which emerged major research thrusts in water chemistry and desalination,
large~scale biology, civil defense, and environmental research. In another
sense, our capacity planning role has been logical, given that Federal agen-
cies and regulators charged with administering nuclear development programs
have also been charged with assessing the need for nuclear power generation.
In today's environment of no nuclear plant license applications and increasing
dedication of utility and agency resources to short-term issues, the non-
traditional and logical roles have seemed equally capable of evaporating.
However, capacity planning activities have survived at Oak Ridge precisely
because they have emerged as long-range, high-risk, high-payoff endeavors; and
funding sources continue to want to loock beyond the cashflow-fuel contracts-
oriented time horizons of utilities. High payoff from the laboratory's
perspective is the benefit from avoiding the social cost of being wrong--where
social may include environmental degradation and health costs associated with
choice of particular power provision options, and also a decline in real
growth of incomes and living standards associated with continuous vacillation,
delay, and postponement of capacity planning.

In my talk, I shall initially hop and skip (the intermittent anecdotal
approach) across research areas of ORNL involvement in capacity planning. I
shall then discuss what I call the "Client Problem." Should Oak Ridge provide
services for the regulators and/or the regulated? If the latter, are we
duplicative of private sector services? Next, I shall highlight what I think
is persuasive evidence that there may be an upcoming electric capacity
shortage~--based upon a focused regional analysis and some general national
observations. Fourth, I would like to spend the greatest part of my talk upon
some new directions which ORNL is currently pursuing in forecasting the demand

ide of capacity planning--with emphases placed upon *'variable level of detail"
and "cost-effective for regulator operation.” Finally, I shall conclude with
a challenge to any and all mid- to long-term capacity planners to cost—
effectively beat the weighted electricity growth prediction of GNP growth plus
or minus regional development possibilities.
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1I. Research Areas in Capacity Planning

I shall employ the "'perverse" approach to describing Oak Ridge activities
associated with capacity planning. That perversity stems from my inclination
to select and highlight activities bearing least resemblance to the paper
topics listed for this symposium. I do so because of my desire to illustrate
the social cost/payoff dimension of much of our work. I shall say a few words
about work performed in five areas:

a. Integrated Power System and Load Control--Operation and Capacity
Expansion Planning

b.  Integrated Diversified Power Sources and Capacity Planning

C. Integrated Conservation and Capacity Planning

d. Need for Power Assessment of the Environmental Impact Statement
e, Sectoral End-Use Demand Modeling~—the BPA Assignment

Divisions of Oak Ridge National Laboratory have advisory committees which
are similar to "outside boards of directors" in their roles of evaluation and
guidance of laboratory endeavors. Upon the recommendation of the Energy
Division advisory committee, ORNL staff have initiated attempts to secure
(internal and/or external) funding for an analysis of future U.S. electricity
supply and use, and how electricity system options are impacted by, and impact
upon, the institutional setting. Although I have not been a direct participant
in the brainstorming for this project, I have benefited from the paper trail
and general repartee associated with its inception. I mention this because
the analysis of supply, use, and institutional setting draws from the five
areas which I have chosen to highlight-~and the repartee to date has identified
critical issues which possibly should define a future role (for the laboratory)
in capacity planning.

As many of you probably already know, Oak Ridge was a key participant—-
along with the Tennessee Valley Authority-—in the development (under Inter-
national Atomic Energy Commission sponsorship) of the Wien Automatic Systems
Planning package (WASP). Since that time, Mike Kuliasha and others at Oak
Ridge have participated in the refinement and evaluation of WASP and
competitor capacity expansion planning tools. Over time, work initially
focused toward capcity expansion planning has moved in the direction of load
management. Four to five years ago, Mike (Kuliasha again) developed a dynamic
simulation model for depicting power system operation with load control. He
has moved from that base to consideration--in a formal modeling context——of
integrated load management and capacity expansion planning. For example, one
load management option, whose impact upon load profiles is currently being
simulated, is the Annual Cycle Energy System (ACES) developed at Oak Ridge.
This single-cycle heat pump and energy storage bin space-conditioning/water
heating system~~developed for residential and commercial sector applications~—-—
had very bad private (homeowner or builder) economics. That is, life-cycle
cost analyses of ACES revealed very long paybacks and very low (sometimes
negative) discount rates (or internal rates of return). However, the "social"
benefit of ACES is that it significantly flattens the residential or commercial
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load profile. While it is by no means certain to me that the net present
social worth of ACES makes it "socially" preferred to other space-conditioning
options, I can at least suggest that the spectre of bad private/good social
economics strains the current institutional framework surrounding the electric
power system.

And in the context of the aforementioned brainstorming on future U.S.
electricity supply and use, Tom Reddoch (of ORNL) has suggested a perhaps
stronger and more practical institutional impediment to integrated load
management and capacity expansion planning. That is, that at the utility
level, load management has surfaced typically first in the rates department—-—
as opposed to, in generation planning. Typically, the utility industry has
never tampered with load. Therefore, in the dynamic political sense of
difference between short-term and long-term planning, demand-side management
has been slow in osmosing its way into the capacity expansion plans.

Mike Kuliasha and Tom Reddoch work as part of the Power Systems Technology
Program at Oak Ridge. A major part of the program is concerned with end-use
technologies, including research on distribution automation, customer-side
thermal energy storage, and system integration of dispersed generating sources
such as Photovoltaic (PV) devices or wind machines.

As part of the overall need to determine utility interconnection require-
ments of small, dispersed generating systems, a major program effort has been
to identify and classify utility intertie problems for these systems. In
1982, investigation of PV power systems was focused on the effects of dc-to-ac
power inverters on an electric utility distribution system. A model of a
line~commutated inverter was used in the simulation of a proposed PV resi-
dential subdivision. Each of the 100 houses in this subdivision was to have a
6.6~kW PV system that would be connected to the electric utility system. A
simulation study of the subdivision showed that the particular electric
distribution system serving the subdivision was large enough to prevent any
significant problems for the utility. However, key parameters were identified
in the electric distribution configuration which, if not properly sized, could
lead to adverse impacts. This work is continuing with the development of a
tutorial for power engineers on the treatment of remote sources of harmonics
on a distribution system.

The adequacy of present protection practices and hardware for electric
distribution systems with dispersed storage and generation (DSG) devices has
been examined. Operation of these systems is a concern for the electric
utility industry because of the Federal laws, such as the Public Utility
Regulatory Policies Act, to promote small, dispersed, customer—owned
generation facilities that use renewable fuels.

Diversity in capacity options is also being considered by Mike Kuliasha as
part of a Bonneville Power Administration/Hood River project in the Pacific
Northwest. The Oak Ridge principal investigator for this project is Eric
Hirst, whose current specialty resides in conservation program evaluation, and
hence, in the integration of conservation and capacity optioms. I say
eurrent specialty" advisedly, because Eric's name shall surface again and
again in the course of my talk.
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Eric has been involved in conservation evaluation projects for the
Electric Power Research Institute, the Bonneville Power Administration, the
DOF Residential Conservation Service program, and the Tennessee Valley
Authority. Among other things, Eric has evaluated the impacts of Federal
residential energy conservation tax credits, utility and broader—based home
energy audit and loan programs, and energy audit programs for hospitals and
other institutional buildings. A current future interest for Eric lies in
exploring something about which very little '"'solid" is known--the relative
effectiveness of conservation incentive options--such as zero or low-interest
loans as compared to cash rebates. My interest in this area is in the social
resource allocation benefit or cost of comservation incentives vis-a-vis
investment incentives for other goods and services.

ORNL has been involved in the development and application of State-level
electricity demand forecasting tools for 9 years. Development has included
the fabrication of constant— and variable-elasticity State-level electricity
demand models, the development of a utility service area disaggregation model
to link State-level forecasts with utility-specific functional relationships,
and the development of a load distribution model in which hourly load data and
utility service area disaggregation forecasts are used to estimate future load
duration curves. Applications of SLED integrated forecasting system com-—
ponents include use in envirommental impact statements employing SLED results,
public testimony employing SLED results, service area case studies employing
the SLED integrated forecasting system, and other applications such as an
evaluation of Regional Electricity Reliability Council demand forecasts and
the assessment of need for Clinch River Breeder Reactor power——about which I
shall have more to say later. Beginning in FY 1981, the emphasis of State-
level electricity demand forecasting at ORNL shifted from model development
and internal application toward the transfer of data and forecasting
capabilities to regional/State users.

Sectoral end-use demand modeling at Oak Ridge has been my can of worms.
Because I shall have much to say later about our residential sector work, I
shall be brief here. In the buildings sectors--both residential and commer-
cial, the major thrusts of my work at Oak Ridge have been upon improving the
aggregation properties and logical consistency of our end-use models--while
retaining the fundamental elegance of engineering process characterization of
energy service equipment and thermal envelope technologies. My current
assignment to the Bonneville Power Administration Division of Power
Requirements follows on 2 years for which BPA has been my principal sponsor of
end-use model development work. In this regard, BPA has taken up the slack
created by the recent Washington-based DOE disdain for model development. I
have persomally felt rewarded by the BPA association because of Jeanne Yates
Rimpo, John McConnaughey, and others' open-minded, competitively stimulated,
attitude about end-use models and candidates for cost—effective preeminence in
this area.

I would now like to come full-circle and return to the question of the
future of the U.S. electricity supply system. Tom Reddoch, Mike Kuliasha, and
others are analyzing power systems technology options—-such as automated
real~time system control capabilities, high-voltage d-c transmission, and both
diversified and centralized capacity technologies—--which hold the promise of
breaking the spatial aspects of demand. For this to happen,"plug-in" supply
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options must be technically and institutionally integrated with localized
load-management and conservation options. What are the fundamental non-—
technological issues associated with the practical evolution of a spatially
forgiving power system? Tom Reddoch has identified three:

a. How will natural gas be deregulated, and what will be the impacts?

b. How will acid rain be "regulated," and what will be the consequent
impact upon coal-fired generation?

¢. What will happen with regard to rate-basing construction work in
progress?

Two of these three are principally demand-side issues. The impacts of
differing natural gas deregulation scenarios upon fuel switching and energy
use curtailment were examined by ORNL staff (in an end-use modeling framework)
as long as 2 years ago. The FERC allowance for CWIP in the rate base is a
need for power assessment issue which involves (or should involve)
methodologically sound considerations of impacts (what I shall later call
deltas) associated with conservation options and load management options, as
well as alternative power generation optioms.

111, The Client Problem for a Natiomal Laboratory

Analysts at Oak Ridge have historically maintained a nervous disequi-
librium characterized by being perceived as fundamentally serving a nuclear-
first institution, performing first-priority service to regulator agencies,
and using Federal Government overhead resources to give away "public domain"
modeling tools and services to whomever so requested in the private sector.
What has changed that picture dramatically in recent years has been a new
breed of laboratory scientist which first infiltrated Oak Ridge in the early
1970's, and a no-subsidy funding picture which has pushed ORNL staff in the
direction of the grass roots. The resoclution of the client problem has to do
with the necessity for meeting public sector modeling objectives in tools
provided also (or even primarily) for private sector use.

In my introduction, I mentioned the laboratory diversification into
nonnuclear, nontraditional analytical, areas. One of those areas fell under
the broad nomenclature of environmental research——but included activities such
as development of methodological approaches to modeling energy conservation
impacts, and econometric models for the need for power assessment of the
environmental impact statement. The impetus for these endeavors was a series
of open-ended collective soul- and purpose-searching seminars conducted (in
the early 1970's at Oak Ridge) by David Rose, on leave from his nuclear
engineering professorship at MIT. An alleged participant in these seminars was
a fresh, young Ph.D. in mechanical engineering (from Stanford University)--
Eric Hirst. Eric proceeded to get himself in trouble by publishing (or trying
to publish) the first report that I know of which was recalled by the
laboratory director—-a report entitled "Electric Utility Advertising and the
Enviromnment.”" In this report, Eric explored what the implications of utility
advertising at that time might be if the public followed the courses of action
called for by the companies. Eric and I have since argued about the functiom
of advertising—-he arguing literally from a mechanical engineer's perspective
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and I arguing figuratively from an economist's perspective. Our differences
notwithstanding, the "prolific radical" (as so labeled by researchers at the
Institute for Public Policy Alternatives) Eric Hirst (and others similar but
not so good as he) brought to Oak Ridge avenues to a new clientele interested
in energy resource conservation primarily and resource exploitation
secondarily, or even, negatively. In a sense, Eric had "his ducks in a line"
when the so-called "Energy Crisis'" opened a vast array of additional support
for his position. It is therefore not in any way paradoxical that this
free-thinking radical should have been the developer of the Oak Ridge
residential end-use model--an endeavor which I consider to have seminally
contributed to the integration of engineering and economics in energy demand
modeling, in ways appreciated and yet unappreciated by the general modeling
public,

From the laboratory "funded self-interest" perspetive, an additiomal
problem with Eric Hirst was that he caught on so well. Technology transfer to
both the regulator public, and to private-sector "Hirst-model” imitators was
very quick. This as well as technology transfer of "soft-science" endeavors
in other areas, has seemed to place ORNL in direct competition with consulting
firms and others in the private sector.

Defining an appropriate and distinctive role for a national laboratory was
exacerbated by the funding crunch which came in with the Reagan Administration.
Then, not only did we find ourselves necessarily in the gray area of possible
duplication of private sector services; but also, there was an increasingly
"pitted" and vituperative competition among the national laboratories for
public sector resources. In this atmosphere, which yet continues, there has
evolved no clear and definitive role for ORNL in public and private client
arenas.,

Notwithstanding this, I have been very comfortable with my role at ORNL,
and my efforts to unearth both public and private rescurces. Perhaps my lack
of discomfort has been because, as a market-oriented economist, I spent my
first days at the laboratory (incidentally coincident with Reagan's election)
in fundamental disagreement with Eric Hirst's optimistic view of conservation
program impacts—-impacts supported by output of his end-use model. And yet,
when I surveyed modeling alternatives offered then (and also mow) by private
sector vendors, I also found inappropriate attention paid to resource allo-
cation impacts (including social costs) associated with programmatic conserva-
tion. I shall later describe our work in this area--in the development of an
evolutionary successor to Eric's original residential end-use model. I would
finally note that I think that this work may hold the promise of making
programmatic conservation selectively more credible, because it places it upon
a more defensible and logically consistent analytical base.

IV. An Upcoming Electric Power Shortage?

In two unrelated research exercises associated with mid- to long-term
capacity planning, ORNL staff were asked to evaluate prospects for electric
generating capacity demand growth. In one of these exercises performed for
the Southeastern Region of the U.S., we also evaluated utility-level reported
and surveyed capacity plans. In both analyses we found no evidence of
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decoupling of GNP growth and capacity demand growth. In the Southeastern
targeted analysis, we found excess capacity persisting through 1990, but
evidence of significant capacity shortages existing thereafter.

In an article which appeared recently in "Public Utilities Fortnightly,"
Craig R. Johnson argued for continued diminished electric power growth—-
"perhaps only 1 percent annually for several years." Rich Tepel, Dave Vogt,
and I (of the ORNL Economic Analysis staff) were asked to validate or refute
Johnson's claim in the light of our premonitions about structural change and
economic growth in the U.S. economy, as well as any electricity demand
forecasting evidence which we might have (lying around).

Of the several aspects of Johnson's article which we addressed, I would
like to highlight two—--on historical and predicted decoupling of electricity
growth and real GNP growth:

(1) Historical--Johnson stated in the article that the "information
economy' would bring about "substantially lower electricity requirements.” On
the premise that the "information economy'' has been a developing entity, we
looked at energy usage per dollar of real GNP for a recent historical period
with an "energy crisis" thrown in--1978 to 1981. We found that decoupling had
occurred with respect to other fuels (including fossil fuels)--from
approximately 39 Quads per trillion dollar GNP (1978 §) to approximately
34 Quads per trillion dollar GNP. On the other hand, electricity usage

remained relatively constant at approximately 4.8 Quads per trillion dollar
GNP.

(2) Predicted-~ORNL Energy Modeling staff employ sectoral end-use
models——for residential, commercial, industrial, and transportation sectors—-
to make mid- to long-term projections of electricity and fossil fuels demand.
These models embody some explicit characterizations of Johnson's so—called
"basic structural changes" and may provide a quantitative verification or
refutation of his conclusions. I should like to initially summarize how our
end-use models deal with the electricity "low-growth" factors identified by
Johnson; and subsequently, cite some fairly recent ORNL projections of
electricity growth for the Nation. Johnson identified four "basic structural
changes:"

a. The "long-term evolution in the nature of the domestic economy and
its use of electricity” is embodied in the projected growth of
commercial services sector floor space, and in projected improvements
in efficiency of electrical appliances and processes.

b. The "saturation of electrical devices in the residential and
commercial sectors" is, of course, an empirical conjecture. The
sectoral models formalize this conjecture by taking actual base
period saturations and projected fuel prices, income, population, and
energy efficiency improvements, and in the context of economic
behavioral paradigms examining a choice of increased electrification
(e.g., more food freezers and computers per household) and switches
to electricity from other fuels, simulate the electric appliance
saturation over the forecasting horizon.
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c. The "reversal of long-term trends in the real price of electricity"
is not a "structural change" which enjoys a unanimous consensus in
the forecasting community. For example, while no one can argue with
the evidence of electricity prices in the recent past, future real
price forecasts which we have received from Dale Jorgensen and
Associates, Brookhaven National Laboratory, and the DOE Energy
Information Administration suggest a significant flattening of future
electricity prices relative to prices for fossil fuels.

d. '"Changes in the mix of U.S. and world industrial production” are
reflected in exogenously determined industrial output projectiouns of
growth in nine manufacturing sector industries, crops and livestock
in the agricultural sector, mining and oil/gas extraction, and the
construction industry.

Our latest characterization of these so~called "basic structural changes"
in a modeling exercise occurred in September of 1982, and employed the EIA ARC
prices. The ORNL results suggest an annual average growth rate in electricity
consumption of 2.6 percent for the decade of the 1980's, and an annual average
growth rate in electricity consumption of 2.8 percent for the period 1980-2000.
Embodied in these cross—sectoral aggregates are 1980-2000 electricity consump-
tion growth rate projections of 1.9 percent annually in the residential sector,
and 2.3 percent annually in the commercial sector. Exogenously projected
annual average GNP growth for the 1980-2000 period was 2.5 percent. Hence,
ORNL modeling results suggest that future decoupling of electricity sales and
GNP growth is unlikely to occur.

I reemphasize that these projections were made out of the context of a
companion supply/capacity analysis for the U.S. However, in a targeted
analysis—-employing the same modeling framework with the addition of supply-
side consideration of utility-level reported and surveyed capacity plans,
reserve margins appropriate for the mix of generating plants, consequent
dependable supply, and potential surplus or shortfall, we found evidence of an
upcoming capacity shortage to exist with reasonably high probability. Our
assessment occurred as part of a very recent, high-priority, high-visibility,
short-timeframe assignment to evaluate marketability issues associated with
Clinch River Breeder Reactor power.

With respect to the Southeastern Electric Reliability Council (SERC)
service area not including Florida, we obtained the following results:

a. An appropriate reserve margin for the SERC-less Florida region--where
the reserve margin is defined analytically as a function of the
anticipated 1990's generating mix--is 23 percent.

b. 1990's reserve margins for SERC-less Florida subregions are as
follows:
Southern Companies——23 to 24 percent
Tennessee Valley Authority—-—-21 percent
Virginia-Carolinas-~24 percent

c. Committed capacity--defined as existing less planned retirements and
under construction (not including nuclear plants less than 10 percent
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complete)~-for the SERC-less Florida region is anticipated to be 115,028 mega-
watts in 1990, and 115,521 megawatts in 1995 and 2000. Planned capacity--
defined to include existing plants less planned retirements, plants under
construction, and planned capacity additions—--is anticipated to be

116,600 megawatts in 1990, 120,181 megawatts in 1995, and 120,781 megawatts in
2000.

d. SERC-less Florida peak demand projections indicate existence of
significant capacity shortfalls by 1995. For example, under our medium-price
end-use modeling scenario, there exist planned capacity shortages of approxi-
mately 5,000 megawatts in 1995, and 20,000 megawatts in 2000. The low, medium,
and high world oil price scenarios depicted are designed to be consistent with
scenarios depicted by the Department of Energy, Energy Information Administra-
tion, and described in the 1982 "Annual Report to Congress.'" Under the
Southern Regional Growth scenario, the SERC-less Florida Region is presumed to
attain an average per capita income equal to the Nation's average per capita
income by 2020.

I would like to note that the econometric forecasts (performed using the
SLED model) were considerably higher than the end-use results. I discount the
credibility of these projections because of problems (e.g., lack of
characterization of explicit appliance efficiency changes) which I believe
this "pure" econometric methodology shares with many other econometric
methodologies.

V. ©New Directions in Load Forecasting

As I indicated in my discussion of Oak Ridge research areas in capacity
planning, our best supply side analysts-—among whom I would mention Tom
Reddoch and Mike Kuliasha--are indicating fundamental capacity planning
modeling and institutional issues surrounding the future U.S5. electricity
system which reside on the demand side. I don't think these guys are passing
the buck, given their active, ambitious, and innovative participation in load
management and power system operation and capacity expansion planning. Of
course, the other primary contributor to demand management is programmatic
conservation and the need exists for modeling tools which accurately depict
programmatic impacts. I shall spend the greatest part of my talk discussing
ORNL end~use modeling efforts directed toward this task. Moreover, I shall
conclude my talk with a precautionary recommendation against using end-use
modelings tools for other purposes for which they may not be cost effective.

A lesson of our participation in Need for Power Assessment work has been
that our econometric modeling tools which produce energy demand forecasts
underlying peak load forecasts have proved inadequate in three principal
respects: :

a. Their track record reveals a consistent upward bias in projecting
energy demand growth.

b. They do not implicitly or explicitly account for nontraditional

energy policy iniatives being undertaken at the state level, and for
the interaction of policy and choices made.
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¢. They cannot monitor the "social" resource allocation cost of policy
options considered and/or taken.

Obviously, a more elaborate structure than the simple econometric approach
is suggested, in order to adequately characterize the latter two considera-
tions. However, the resource allocation constraints faced by state regulators
may preclude consideration and adoption of a full-blown 'Monte Carlo/
Microsimulation" approach. Oak Ridge has now developed a modeling capability
in the residential sector which is flexible in its level of disaggregation
detail, and which gives explicit consideration to social cost and resource
allocation questions associated with conservation policy initiatives. Part of
my assignment to BPA is to extend this methodology into the commercial
sector. I propose this methodology as a cost-effective assessment alternative
to present-regulator-practice econometric tools and to present—and-future
utility practice micro-simulation tools.

The ORNL Residential Reference House Energy Demand (RRHED) Model is a mid-
to long-term theory-based engineering/economic stock—adjustment model which
simulates energy use and policy impacts over a 20- to 30-year time horizon.
RRHED is an end-use model in the sense that energy consumption and policy
impacts are forecast at the energy service provider level of detail--by fuel
type and category of equipment. 'Reference House" refers to the basic unit
for disaggregating the usage extensity (i.e. floor space) of energy service.
For the existing building stock, reference houses are single family,
multifamily, and mobile home--with each reference type subject to indepen—
dently considered (nomsimultaneous) energy-service equipment replacements.

For new structures, references houses are disaggregated by building type (e.g.
single family), and by assignment of fuel type to equipment type for space
conditioning and water heating. This "high order' disaggregation permits
analytical consideration of the simultaneous choice (for a new building) of
building envelope thermal performance, space-conditioning equipment and
efficiency, and water heating equipment and efficiency. Choice among 12 space
heating systems (e.g. electric central forced air); choice of room, central,
or no air-conditioning; and choice of water heater by one of four fuel types
is considered. Application of household-survey determined decision rules for
available combinations of space conditioning and water heating fuel and
equipment has resulted in analysis of up to 81 configurations for each
building type. Hence, new structures are disaggregated into up to

243 "Reference Houses."

An historical grievance of long standing with respect to end-use modeling
has been the existence of "aggregation biases'" of undetermined magnitude and
direction. One aggregation bias (referred to as Type 1) stems from the fact
that aggregation of energy use totals across households by multiplying the
average energy use characteristics of the housing stock and the number of
households generally produces an answer different from the correct result
obtained by a simple summation of energy use for all houses. A second bias
(referred to as Type II) emanates from the prediction of energy use
characteristics, e.g., appliance efficiency and usage, based upon average
population characteristics, e.g., per capita income.
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The reference house approach mitigates Type I aggregation bias by
disaggregating the housing stock to enable prediction of average energy use
characteristics at the reference house level, and then reaggregating with
weights determined by the predicted incidence of each reference house in the
stock. Type II aggregation bias is mitigated by estimation of energy use
characteristics as a function of building-type specific household character—-
istics such as income and number of persons per household. Type II bias may
be further mitigated by performing model simulations by income class--hence,
resulting in a two-level stratification by income class and by class income
per housing type.

The estimation of new and existing housing stock and size may occur
through use of an ORNL submodel or user alternative. The ORNL housing
submodel forecasts stock demands based upon age characteristics of the
population, marriage and divorce patterns, household income, and other
factors. However, a model practitioner may choose an alternative forecasting
tool which stratifies (in addition to "by housing type") by income class, by
age category, etc. Hence, the RRHED model can run consistently and inter-
actively--employing feedback loops linking income and price movements, housing
stock growth, and household energy service and energy service equipment
demands~-with service area, regional, or national econometric and demographic
forecasts of economic activity, population trends, and patterns of household
formation, dissolution, etc.

The reference house disaggregation is posed as a cost-effective
alternative for mitigating aggregation biases to so-called micro-simulation
models which utilize sampling techniques to select specific household
portfolios with explicit appliance holding, sociceconomic, and demographic
characteristics. On the one hand, because RRHED minimally requires
significantly less household detail (as input requirements), it can be
cost~effective in the analysis of policy impacts for which distributional
effects are either not at issue or are demonstratively meutral. On the other
hand, the micro-structure of RRHED new building usage, efficiency, and fuel
and equipment choice makes the model amenable to input household stratifica-
tion up to and including the results of a sampling exercise for selecting
specific households. At whatever level of input detail, RRHED offers
significant advantages to other modeling approaches in its ability to
explicitly consider conventional and advanced energy service equipment, and
the impacts of policy prescriptions for equipment and shell performance upon
the choice of fuel and equipment saturation.

The ORNL Residential Reference House Energy Demand Model is theory-based
in the sense that it simulates on the bases of satisfaction of logically
consistent economic paradigms characterizing household decisiommaking and of
energy service production possibilities stemming from engineering techno-
logical process analyses. Logical consistency is established between an
intertemporal utility maximization hypothesis which underlies fuel and
equipment choice and a life-cycle—cost minimization hypothesis underlying the
capital stock usage/efficiency/capacity decision. The engineering process
analyses generate shell and energy service equipment isoquants which are
consistent with a broad family of underlying household energy service
production functions or correspondences. Analysis of policy effecting new
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structures can be done in a constrained optimization framework which produces
cost-of-conservation shadow price increments to the fuel prices confronting
the builder or homeowner decisionmaker.

RRHED is a stock—adjustment model in the sense that energy service capital
stock and its efficiency characteristics change with respect to base year
values. The baseline case is established using survey data, historical
series, and a limited amount of informed judgment. The primary output of the
model is total residential energy consumption classified by housing type,
fuel, and end-use. However, because the model is capable of extensive "with
and without" analysis of conservation programs, a significant implicit output
of the model is characterization of policy impacts reflecting the primary
output detail capabilities. RRHED currently deals with four fuel types (with
structure in place and analysis in progress to permit explicit characteriza-
tion of a fifth fuel-—-wood), nine end-uses (with structure for ten end-uses)
and two housing states. The model also calculates estimates of new equipment
penetration, equipment efficiencies, structure thermal performance, usage
factors, fuel expenditures, equipment costs, and incremental costs for
improving thermal performance of new and existing housing units.

At each of the two levels of reference house detail (for existing and
new), RRHED consists of four conceptual structural components--building stock,
usage, technology/efficiency choice, and fuel-and-equipment choice. An
accounting equation bridges the two levels of disaggregation and relates the
structural components. The building stock component forecasts the extensity
or breadth of energy utilization by deriving total residential floor space.

As I previously mentioned, this component exists as a submodel and may be
substituted for by a user alternative. The building stock component supplies
exogenous inputs to the remaining integrated structural components. The usage
component projects the long-run and short-run intensities of energy utiliza-
tion (e.g., space heating ambient temperature). The technology choice
component, conditioned by the long-run usage expectation, determines the
economically optimum selection of building envelope and end-use equipment.

The economic optimum may be constrained by prescriptive performance standards
for equipment and/or shell, or by an aggregate performance objective (e.g., a
"Design Energy Budget") for the building. The efficiency choice associated
with various equipment types (e.g., heat pump) and fuel choices, as well as
the shadow price associated with policy constraints on an economic optimum,
"impact upon" the capital and operating cost attractiveness of employing these
fuel-and-equipment combinations--which is a basis, for fuel-and-equipment
choice (in the fuel-and-equipment choice component). For simultaneous
efficiency choices in new structures, logical consistency is established with
a nested logit fuel-and-equipment choice involving space conditioning, water
heating, cooking, and clothes drying end-uses. Finally, the accounting
equation relates the output of the four components to determine the primary
output—--residential energy use.

RRHED was preceded by the ORNL Residential Energy Demand Model originally
developed by Eric Hirst and Janet Carney for the purpose of predicting energy
conservation policy impacts at a geographically aggregated level (i.e., Nation
or Federal region). Objectives characterizing initial model development
included simplicity of structure; ease of understanding; ease of implementa-
tion, repetitive application, and interpretation; cost—effectiveness relative
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to other modeling tools; and clarity and availability of documentation. A
measure of the effectiveness of the accomplishment of these goals was that the
soon~-to~be-called "Hirst model" enjoyed wide distribution and application.

The model was employed for analysis of policy impacts, determination of
programmatic expenditures, and forecasts of energy demand at the end-use and
fuel~type level of detail. At the same time, the model served as a "benchmark
methodology" for the development by private-sector vendors of "carbon-copy"
and more sophisticated models for use at more geographically disaggregated
levels of analysis (e.g., utility service areas). With the widespread
technology transfer and programmatic applications emanating from development
of the Hirst model, it is not surprising that the model became an early target
for evaluation and validation. The impact of these exercises (performed by
nationally known economists and statisticians under sponsorship from the
National Bureau of Standards, the Energy Information Administration of the
Department of Energy, the Electric Power Research Institute, and others) has
been to induce additional technology transfer to private-sector model
builders, and to stimulate the evolutionary upgrading of the original

product. That upgrading has occurred in the context of retaining the
identified strengths of the original Hirst modeling approach, responding to
the salient weaknesses identified in the evaluatory process, and drawing from
insights and techniques of private—sector vendors.

The basic approach to end use modeling is to identify energy consumption
by energy using activities and then aggregate over these activities to obtain
overall consumption. This approach is based upon the idea that the stock of
energy using appliances (with each "appliance" associated with an end-use) in
a household can "indicate" the energy consumption of that household. The
disaggregation provided from energy consumption by end-use, instead of lump
sum consumption, is valuable in the analysis of detailed conservation
programs. Energy projections may be obtained by carrying forward economic and
engineering data with exogenously determined modifications to these data
occurring over time., Alternatively, energy projections may occur on the basis
of theory-based endogenously determined modifications of input data and/or
parameters. A combination of "accounting-based" projections (e.g., impacts of
shell-retrofit programs in the RRHED model) vis—a-vis theory-based projections
(e.g., RRHED model projected heat pump penetration in new residences) may be
employed because it is deemed cost effective in terms of model structure and
"run' characteristics, or because of insufficient data to support a theo-
retical construct. Moreover, as stated previously, application of the end-use
modeling basic approach necessitates aggregation of energy use totals across
households. The original Hirst model accomplished this aggregation by
multiplying the average energy use characteristics and household size by the
number of households. This engendered the fundamental "aggregation bias"
criticism of the Hirst and Carney modeling approach. For this reason, end-use
modeling (at Oak Ridge and among private vendors) has moved in the direction
of simulation approaches involving the summation of household prototype energy
use totals for which each prototype represents increasingly smaller segments
of the housing stock.

The ORNL Residential Reference House Energy Demand Model represents the
current evolutionary state of residential end-use modeling at Oak Ridge.
However, ORNL staff have developed a separate residential end-use model (with
restricted new structure capabilities) which references the existing housing
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stock by five-year vintage segments, and "tracks" appliance survival in low-,
medium—, and high-efficiency categories. Expansion of RRHED structure to
include the referenced vintage stock is anticipated within calendar year
1984. However the cost-effectiveness of the integrated structure will
determine whether or not it is adopted as an "official" successor to RRHED.

The original Hirst model has withstood much derision and abuse from
so-called independent evaluators who, in the best spirit of American
entrepreneurship, have put forth their own models as alternative forecasting
and policy analysis tools. I think that the fact that Eric Hirst's model
survives as the resident "whipping boy" for the profession is a tribute to its
enduring strengths rather than identified weaknesses——about which Eric's
initial structure has been sufficiently flexible to permit straightforward
resolution. I consider the Residential Reference House Energy Demand Model to
be an honorable evolutionary successor to the original Hirst conception--a
successor which has extended the explicit technology characterization and
consideration concept in the directions of simultaneous consideratioms for
simultaneous decisionmaking, and a technology isoquant envelope characteriza-
tion of conventional and advanced end-use equipment technical options.

An example of the relevance of these capabilities for accurate determina-
tion of programmatic conservation impacts is the characterization of
prescriptive shell and equipment standards (e.g., ASHRAE 1980A) for new
structures. In this regard, as a market economist sufficiently reactionary to
display a photograph of Milton Friedman above my desk at Oak Ridge National
Lab, my initial concern about the state of end-use modeling of standards was
that the true ‘''resource misallocation" social cost was not being depicted in
any way. What I am talking about in graphical and economic analytical terms
is the difference between a tangency of an isoamenity isoquant (perhaps
representing 72°F space heating) and the lowest possible life cycle isocost
line and (alternmatively) the policy constrained intersection between the same
isoquant and some higher (more expensive) life cycle isocost line. My initial
work in end-use modeling at Oak Ridge was to model this policy constrained
optimization-—for residential and commercial sectors——and associated social
premium fuel cost impact for technology choice. However, as things happen in
this business, it took Ken Corum of the Pacific Northwest Regional Power
Planning Council to point out to me that it was logically inconsistent to
model the social cost impact upon technology choice without also extending the
analysis to the impacts upon fuel-and-equipment choice and equipment satura-
tions. We have done so at ORNL by aggregating the prescriptive standards for
shell and simultaneously considered end-uses, determining the social cost
Lagrange multiplier shadow price associated with each particular (of
81 possible per building type) configuration of equipment and shell, and
incrementing fuel cost in the nested logit analytical fuel-and-equipment
choice by the shadow price. What you get—-which is very important-—from all
this is indication that a solitary tight standard on electrically heated
houses may work against the market attractiveness of these houses--in a
counteractive fashion to the operating cost advantages brought about by the
standard.
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VI. Conclusion--Beating the GNP Signal and Regional Development Economist

Thus far, I have discussed Oak Ridge involvement on both the supply and
demand sides of capacity planning. In my section II discussion of research
areas in capacity planning, I intimated past, present, and future supply-side
actor roles in the integration of capacity expansion plamning as convention~
ally tooled with load management, diversified power sources, and conserva—
tion. In sections IV and V, I discussed rather extensively past and present
roles involving me, firmly entrenched on the demand side of capacity planning.
As a demand-side analyst, I would again like to ask myself--as I did in part
in my section III discussion of the client problem for a national lab--about
the appropriate future role for a demand-side analyst in capacity planning.

In general, demand forecasters have given utilities, utility organi-
zations, regulators, and any other potentially interested parties the very
hard sell. We have done this, partially if not primarily, on the basis of how
poorly we have done in the past-—and the notion that more dollars for more
sophistication will redeem us and be well spent. I continually hear about the
so—called "education process'" and how well we have succeeded at proving our
necessity to the utility community.

I think our cost-effectiveness at mid—~ to long-term demand-side capacity
expansion planning has been oversold. In saying this, I would like to
distinguish between absolutes and deltas~-where deltas represent changes in
peak demand growth brought about by management of load profiles, conservation
programs, etc. If I were to be held to account for a mid- to long-term peak
demand forecast--an almost unheard-of and unimaginable accountability, in a
not unreasonable economic and energy health scenario of little perceived
service area need for load management or programmatic conservation, I would be
strongly inclined to base my growth forecast upon a simple three-step
analytical procedure:

a. Assume that service avea peak demand growth will closely follow real
GNP growth,

b. Adjust that assumption in accordance with a regional economist's
analysis of how service area income growth prospects differ from
national income growth prospects.

¢. Additionally adjust the assumption on the basis of saturation of
electrically powered energy service equipment relative to national
averages.

Not only do I claim that this procedure would be cheaper; but also, I
claim it holds the promise of being more accurate for the stated purpose. On
the one hand, demand models have a strong tendency toward error compounding in
the projection of absolutes, which tends to move the energy growth forecast
away from the growth pattern of key energy growth determinants (such as
income). On the other hand, attention paid to complex demand models bears an
opportunity cost of attention paid to very important regional growth factors
(such as service area "high tech" education infrastructure and the labor union
climatic impact upon the potential for indigenous entrepreneurship).
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I believe that the appropriate role for demand modeling in capacity
expansion planning is not significantly different from the Oak Ridge-Eric
Hirst inspired initial role of analysis of national programmatic conservation
benefits. That is, given a clearly perceived service area necessity, the role
lies in the analysis of peak demand growth deltas achievable from managing
load and mandating energy conservation. And, accepting this as a legitimate
role which we may or may not perform cost-effectively, I think we must make
our analysis credible by accounting the social cost impacts of our policy
prescriptions.

(WP-PN-55934)
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I welcome the opportunity to be here today to participate with you in
this symposium. The National Regulatory Research Institute is to be
commended for bringing together, in one forum, two related subjects that I,
as a system planner, find of vital and timely interest. I also appreciate
this opportunity to share with you some of my views on both these subjects
-- that is, load forecasting and generating capacity expansion -- and on the
interrelationships that exist between them.

In this presentation, I will not delve into an examination of the
technical details involved in carrying out the kinds of analyses that are
being described in the various papers being presented at this symposium.
Rather, I will discuss some of the broader principles pertaining to such
analyses from the power system planning perspective.

To begin with, let me pose the gquestion "what 1s power system
planning"?

To answer this question, we need to first define the basic terms
involved, by asking ourselves what is a "system"? 2And, what is a "power
system"?

Webster's definition of a "system® is

YAn assemblage of objects united by some form
of regular interaction or interdependence;
or

a complete exhibition of essential principles
or facts, arranged in a rational dependence
or connection, 2

or

a complex of ideas, principles, etc., forming
a coherent whole."

So, to paraphrase Webster, an electric power system is -~ in a limited
sense ~-- an assemblage of generation, transmission, and distribution
facilities, designed in such a manner as to operate as an interdependent,
coordinated whole in supplying electric power requirements in a certain
geographical area.

In a broader sense, however, an electric power system can be defined
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as a set of interrelated conceptual, as well as physical, elements,
including -- in addition to physical facilities -~ such factors as load
characteristics and rates of growth, availability of fuel resources and
their costs, power plant efficiencies, outage rates and operating costs;
all viewed in the dimension of time, i.e., in terms of today, next year,
and ten years hence.

Power system planning, in turn, involves analysis, evaluation, and
synthesis of the various elements of the power system -- in terms of their
conceptual and physical attributes -~ so as to achieve certain optimizing
goals over time. In this regard, in the very broadest sense, the primary
elements involved in the system planning process are: (1) the customer's
electric load =- which represents the product that the wutility is
responsible for supplying, (2) the generation system =-- which represents
the source of that product, (3) the transmission system -- which represents
the means by which the product is delivered from the generation source to
the customer, and, in addition, (4) the cost involved in supplying the

product to the customer, and (5) the impact of time on each of the previous
four elements.

With these elements in mind, then, the broad objective of power system
planning is to provide ~-- over the course of time =-- the most reliable
electric power supply, at the lowest possible cost, and within the overall
framework of sccietal goals and objectives, including, in particular, the
objective of preserving =~ and optimizing the utilization of =-- our
nation's resources, including not only energy and the natural environment,
but also capital and labor.

As I am sure you can appreciate, the planning of a power system is
obviously not an engineering handbook technique or routine mathematical
exXercise. Power system planning differs inherently from planning in other
industries where decisions for expansion can be made solely on an
evaluation of the market, or where it may be decided not to sell a certain
product or serve a particular area. In the power industry, however, the
opportunity to serve is also the obligation to serve. Sound planning must
be comprehensive and imaginative. It requires a knowledge not only of the
technical characteristics of equipment or the increasingly sophisticated
tools and techniques of analysis, but also an understanding of the needs of

the customer and, even more basic, of the economic and social forces
shaping our industry.

Now, in discussing the general framework of power system planning, we
need to take note of the essential nature of the product of the electric
utility industry.

First, our highly developed industrial society is greatly dependent on
the availability of electric power supply. This has been true in the past
and will continue to be true, even more so, in the future.

Secondly, because of its unique characteristics, electricity must be
produced -~ i.e., made available -- at the instant it is consumed. In this
regard, the consumer expects =-- and, indeed, takes for granted ~- that
electric power will be instantaneously available, when the switch to
operate that certain light, appliance, or special eqguipment is turned to
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the "on" position.

These two facets regarding the essentiality of electric power supply
have a bearing on an important planning concept that is rooted in both the
technical and time-related aspects of power system planning. This is the
concept of lead time, which is the time required to complete a project once
the decision is made to proceed. In the electric power industry, because
of the technological complexity of the equipment involved and also because
of the oftentimes cumbersome and very time-consuming 1licensing and
certification requirements, lead times are very long for major power supply
facilities: typically five to ten years or more in the case of generating
facilities, and four to six years in the case of major transmission. Such
long lead times have major implications in the planning process,
particularly in view of the relatively short lead times for those customer
facilities that utilize electric power. With residential, commercial, and
most industrial construction requiring only up to one to two years to
complete, actual construction of new generating facilities must be started
several years prior to the time when the eventual user of the electric
energy to be produced by these facilities makes his decision to proceed
with air conditioning his home, building a new shopping center, or
constructing a new, large manufacturing plant.

Earlier, I suggested that sound power system planning requires, among
other things, an understanding of the economic and social forces shaping
the industry. Such understanding is, of course, an essential aspect of
lcad forecasting and bears out the fact that load forecasting is, after
all, an intrinsic part of the planning process. Indeed, it constitutes the
very first step in that process and provides the basis on which power
supply facilities are planned.

In this connection, we are all aware that changes in the level of
electricity consumption are influenced by many interrelated factors. These
include, for example, economic activity, population trends, household
formations, the weather, the saturation levels and efficiencies of various
electrical appliances, technological innovations, changes in the relative
price and availability of electricity compared to other substitutable
energy sources, and shifts in basic human values and lifestyles.
Significantly, of all these factors, the one that exerts the greatest
influence on growth in electric load is economic activity. In the broadest
sense, it is the economic forces operating in society that determine the
overall size and vitality of the marketplace within which
electricity~consumption decisions are made.

The nature of the correspondence between electricity consumption and
economic activity =-- as measured by the Gross WNational Product =-- is
illustrated in Exhibit 1. This exhibit, which covers the period 1960 to
1982, clearly shows that, historically, a relatively close relationship has
existed between real GNP and the nation's electricity use. The exhibit
also provides a visual comparison of the trends which occurred in both
economic activity and electricity use both before and after the Arab 0il
Embargo of late 1973 to early 1974.

As Exhibit 2 indicates, in the pre-embargo vears 1960 to 1973 -~ which
was a pericd of essentially uninterrupted, steady economic growth =-- real
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GNP grew at an average annual growth rate of 4.2%, while another economic
indicator, the Federal Reserve Board's Index of Industrial Production, grew
at a 5.3% rate. The corresponding growth rate in the nation's electric
energy consumption was 6.7%. However, in the post-embargo period 1973 to
1982 -- which included some relatively severe recessionary times resulting
from a host of unforeseen developments -~ each of these average growth
rates dropped dramatically: The growth rates for GNP and Industrial
Production dropped to only 1.8% and 0.7%, respectively, while the growth
rate for electric energy consumption dropped to 1.4% per year.

It also should be noted that the change in the rate of growth in the
FRB Index of Industrial Production in the post-embargo period, as compared
to the pre-embargo period, reflects the particularly severe impact of these
recessionary times on the industrial sector of the nation'’s economy.

During the past ten years, concurrent with the experience of the
previously unforeseen declining rates of actual growth in the economy and
in electric energy consumption, the forecasts of future electricity use
have been progressively declining, as shown in Exhibit 3. Projections of
growth in summer peak demand for the nation have been successively lowered
since 1974: from 7.6% per year, envisioned in 1974, to 2.8% per year,
based on the most recently reported utility forecasts. These downward
revisions in the forecasted growth rate of peak demand represent the
dynamic response of the forecasting process =- which is inherently complex
-= to actual experience and to changing perceptions of the future.

Evidence of the effect of the dramatic shifts which have been
occurring in economic growth is given on Exhibit 4, which compares actual
GNP for the year 1982 with the range of forecasts made by several prominent
forecasting organizations, starting with the first quarter of 1981. Even
in the short term, the economic forecasters have missed the mark and have
not been in total agreement.

The uncertainty still inherent in forecasting economic activity is
evident from Exhibit 5, which portrays a range of forecasts of GNP for the
years 1983 to 1986. The highest of these forecasts projects that GNP will
grow at an average annual rate of about 4.4% from 1982 to 1986, while the
lowest of these projections reflects an average growth rate of 2.2%.

In ccnnection with such uncertainties, i1t is important to note that,
over the long term, the impact on future power supply programs of even a
small change in the average annual growth rate in electricity use can be
significant because of the compounding effect of such a change over time.
An example of this effect can be seen in Exhibit 6.

In the example shown, a change in the growth rate from 3.0% to 3.3% in
the annual peak electric demand for the U.S. over the ten-year period
1982-1991 results in a change in the increase in peak demand requirements
from 130,000 MW to 145,000 MW. The additional 15,000 MW translates to a
12% change in the increased requirements.

From all of this, it is evident that the forecasting of electric load

is a dynamic process that is fraught with uncertainties. While these
uncertainties stem from a variety of sources, they can be classified as
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basically two types:

(1} modelling uncertainties, which reflect our inability to
simulate perfectly the real world, and which stem from an
imperfect understanding of the causal structure of events
affecting electric load growth, and

(2) uncertainties regarding societal change, which reflect our
inability to know in advance 211 that the future holds.

Prominent among the second type of uncertainty is that associated with the
future direction and effects of government policy changes and private-sector
responses which influence the economy. Thus, although we may know and be
able to analyze and try to understand the past, we cannot really know with
any certainty the future. 0Of course, we may project various future
scenarios, and then analyze them, but any anticipation of future events is
still subject to error and uncertainty. The power system planner -~ just
like everyone else =-- is not privileged in this regard, nor is he blessed
with a special gift of clairvoyance. He simply cannot be certain of the
future.

Indeed, the task of making projections into the future is not made any
easier for the power system planner by the fact that the electric power
industry -~ today =-- 1is facing changes and uncertainties .on a scale
unparalleled in' its history. In this connection, the past several years
have been marked by increasing uncertainties in all facets of power supply.
This includes uncertainties regarding the bringing into service of new power
supply facilities =-- beset as they are now by environmental opposition,
financing problems and extended procedural and licensing requirements.
These factors have increased the minimum forecast periods associated with
the construction of such facilities and have added increased uncertainty to
the accuracy of load forecasts that must be relied upon for decision-making.
In addition, the events following the o0il embargo of late 1973 and early
1974 raised additional uncertainties regarding the future energy demands of

the nation, as affected by conservation, energy substitution, and a host of
other considerations.

In view of all this, the system planner learns to live with uncertainty
as a permanent ingredient in his day-to-day work. He learns to distinguish
between the sustained, long-term trends and transient, short-term effects.
He learns that there is no way to come up with a precise, all-encompassing,
rigid, long-term plan of system development that can be kept unchanged --
once made -- until the time of its implementation, without prohibitive
penalties to the power system, to its customers, and -- indeed =-- to the
society at large. He learns —-- finally -~ that, out of several alternative
plans for future system development, the plan with the greatest flexibility
for change is -- in general -- preferable to all others.

In spite of all the difficulties that may be involved in projecting
future trends, conditions, and requirements -~ and in formulating plans for
the future development of power system facilities to meet these requirements
in the best way -- the system planner has no choice but to try to do so. At
a fixed peint in time ~- determined by the lead times involved -- a decision
must be made to proceed one way or another.
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In this connection, the concept of "lead time" and the concept of
"uncertainty" both play an important role in the timing of new generating
facilities on a power system and in the determination of a system's
generating-capacity reserve requirements.

Since, as I pointed out earlier, it takes five to ten years to build a
major power plant, a decision to proceed with its construction -- and to
dedicate the necessary capital funds -- must be made at least five to ten
years prior to the time when the output of the plant is expected to be
needed to meet the customers' additional requirements for electric power.
Whether that additional generating capacity will -- in fact -- be needed at
that particular point in time is never certain beforehand. It cannot be
certain simply because the need for additional generating capacity five orx
more years hence depends on a multitude of circumstances, each cf which --
when projected five or more years into the future -~ is itself subject to
error and uncertainty.

The need for additional generating capacity several years hence depends
-- to begin with ==- on the expected load growth over the period in gquestion.
Beyond that, it depends on the seasonal, monthly, weekly, daily, and even
hourly pattern of electric demand, as it will be at that particular future
point in time; it depends on the future availability performance of the
system's generating capacity, both the capacity already on line and that
still to be added during the intervening period; it depends also on the
extent to which the power system ~- several years hence -- will be able to
‘rely on emergency support from its interconnections with other utility
systems. All of these factors, while known or easily determinable for the
past, can be only roughly estimated for the future.

While we wuse, in planning, many elaborate and complex analytical
techniques to help us understand the interaction between the various factors
that influence future load growth and capacity reserve requirements -- and,
therefore, influence the timing of new capacity additions -~ all these
techniques merely help us predict what would happen only if certain assumed
conditions occur first. The "if" is of crucial importance here, since ~-- as
long as we cannot be certain of our assumptions -~ we cannot be certain of
our results.

How, then, are we to judge whether, as part of a capacity expansion
plan, the construction of a major, new generating facility is to be started
this year, next year, or two years hence? With the cost of a single, large
generating unit approaching, in some cases, one billion dollars or more,
this is literally a "billion-dollar"™ question. It is a question of wvital
concern to the consumers of electricity, who eventually will need to carry
the cost of the new facility; to the electric wutility, having the
responsibility to provide adequate electric service in a given geographical
area and also having the burden of scraping together the funds necessary for
going forward with +the construction; and to the regulatory commissiocns,
which have the dual responsibility of assuring adequate electric power
supply at reasonable cost to the consuming public, while at the same time
protecting the rights of the investing public to a reasona.le return on its
investment in utility securities.

In situations such as this, the tendency is to search for "an easy way out",
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to lock for a single index, a single number or a set of numbers, that would
provide the answer to the difficult question at hand. It would be nice

to have a single index, or a single number -- such as 15% reserve, or 20%
reserve, or "loss of load once in ten years", or "loss of load once in five
years" =-- that would determine for us how much generating capacity a power

system ought to have five, or eight, or ten years hence. It would make the
problem a great deal simpler for electric utilities, in explaining their
need for additional financing to utility regulators; for utility regulators,
in judging a utility's need for such financing and in explaining such need
to ‘the general public; and for the general public, in appraising the
performance of its electric utilities and its regulatory commissions.

The fact of the matter is that there is no single, simple answer to the
question of whether the construction of a major, new power plant ought to be
started this year, next year, or two years hence. The answer depends on a
multitude of factors that vary from one particular instance to the next.
Many of these factors elude numerical interpretation entirely. Application
of judgment remains an all-important ingredient.

In this regard, the judgmental weighing of the consequences of being
wrong in following one alternative path vs. another is particularly helpful
in deciding which path to follow. When applied to the gquestion of
forecasting future electric demands, determining future capacity reserve
requirements, and establishing the timing of new generating capacity
additions, such judgmental weighing of where the public interest lies will
invariably point toward having temporarily too much generating capacity
rather than too little.

Construction of new generating capacity may be slowed down, following a
clear showing of reduced growth in electric demand or reduced need for
generation reserves. However, construction cannot be accelerated beyond its
inherent lead-time constraints, regardless of how desperately society may
find itself needing the very generating capacity that it failed to
develop in a timely manner.

Clearly, power system planning is a vital and challenging task. In
view of the uncertainties involved, if the demands of society for electric
energy are to be met, then it is important that the plans for meeting those

demands recognize the need for both flexibility and the application of
informed judgment.
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Average Annual Growth Rates
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1960-1973 and 1973-1982
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% B
Real Gross National Product 4.2 1.8
FRB Index of Industrial Production 5.3 0.7
U. 5. Electric Energy Consumption 6.7 1.4
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Exhibit 3
Summer Peak Demand Projections
Comparison of Annual Ten-Year Forecasts
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THE MEASUREMENT OF TIME VARIANT LINEAR TRENDS
IN OHIO SECTORAL ELECTRICITY DISPOSITION LEVELS

Galip Feyzioglu
Chief, Research & Forecasting Section
Ohio Department of Development
Division of Forecasting & Information

I. Introduction and Objective

The time paths of many observed economic data series such as the sectoral
sales of electricity in the U.S. or Ohio, as well as the revenues realized
from such sales, have followed trajectories which could be characterized by a
sequence of straight line segments. We refer to such trajectories as time
variant linear trend trajectories. The following examples pertaining to the
behavior of the time paths of electricity sales in the U.S. and in Ohio, and
of the associated revenues should clarify what we have in mind when we refer
to time variant linear trends, or time variant linear trend trajectories.

(Exhibit 1)

The analysis and assessment of the historical time path trajectories of
observed data series is an essential component in projecting their future
magnitudes. Traditionally the time path trajectories of economic data series
such as those pertaining to the provision and disposition of electricity, have
been attempted to be analyzed and assessed through the use of indirect spec-
ulative methods such as econometric statistical demand models, or end use
demand models. The success of such indirect speculative methods as accurate
predictors of future trajectories and even as accurate describers of historical
trajectories has increasingly come into question as the realized time path
trajectories of electricity sales have consistently diverged from the forecast
trajectories.

Figure 1 shows the consolidated ten year forecasts of net electricity
generation in Ohio for the decades 1974-1984 through 1983-1993. These forecastss
were consolidated from the corresponding Ten Year Forecast Reports of Ohio
electric utilities which were submitted annually to the Ohio Power Siting
Commission, or to the Ohio Department of Energy, from 1974 to 1982. According
to the 1974 ten year forecasts of utilities, the statewide net generation in
1984 was projected to be around 220 billion kWh. The actual 1982 level turned
out to be closer to 110 billion kWh.

This kind of discrepancy is one reason why serious doubts have been raised
about the reliability of traditional forecasting techniques. Figure 1 shows
that the output forecasts of demand models have not been much different from
straight line projections of the average trend in the preceding periods of
analysis to the next ten years. However, the historical time path shows a
discrete decline in the post-1973 marginal trend relative to the pre-1973
trend. Despite such a clear-cut signal given from the data, the demand models
have failed to predict that (a) the magnitude of average trends will be declin-
ing in the post-1973 period and (b) the forecast trajectory which is projected
to move along the average trend will always be above the realized trajectory
which follows the marginal trend. The failure of indirect speculative fore-
casting techniques in these respects suggests a need for developing a new
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methodology in analyzing the time paths of economic data series. It is quite
clear that direct and deterministic analyses and assessments of the histor—
ical trends in many cases could produce by inspection far more accurate, and
easy to interpret, results than those produced by various econometric models.
We have, therefore, developed a conceptual framework and an analytical meth-
oldolgy for the analysis and assessment of time path trajectories of annual
economic data series as a problem in intertemporal measurement of systemic
flows. The conceptual framework and the analytical methodology are based upon
similar methodologies of measurement and analysis employed in such positive
domains of inquiry as astronomy, geodetics and physics and their validity is,
therefore, independent of any ontological presumptions which are implicit in
current economic analyses and econometric practices.

II. Methodology

A. Conceptual Framework

1. Preliminary Remarks: A time variant linear trend trajectory is a
continuous mapping, from the domain of time onto the range of the economic
magnitude under observation, which is nondifferentiable at a finite number of
points within the time domain under consideration.

From an empirical point of view, the time paths of economic data series
may, in general, be regarded as reflecting the dynamic states of economic
systems. Where this is the case, discontinuities or nondifferentiabilities in
the time path of economic data series would be indications of disruptions or
alterations in the historical course of events which have defined the operating
conditions of the system in question. Hence, precise, accurate and consistent
analyses and assessment of time variant linear trends in the time paths of
economic data series would provide useful information in understanding the
dynamic behavior and determinants of economic systems.

Whether the measures currently taken to achieve future goals are appro-
priate or not is contingent upon the validity and accuracy of current analyses
and assessments of the projected behaviors of relevant systemic trajectories.
Hence, the information derived from analyses and assessments of historical time
path trajectories of empirical economic systems may contribute signicantly both
to the understanding of positive economic problems and to the design, choice
and implementation of suitable measures for their solution.

The accurate and consistent analyses and assessments of time paths require,
first of all, an understanding of the general conditions that characterize
observed economic data series. Next, it requires a conceptual framework within
which observed data can be related to mathematical concepts. Finally, it
requires a methodology for the modeling and assessment of the time paths in
question, which would represent the functional or definitional relations among
the empirical data in terms of mathematical concepts and mathematical functions.
We shall briefly address these points in the remainder of this section.

2. The Nature of Economic Data Series: The nature and existence of
processes of provision and disposition of a particular commodity in a particu-
lar human society are, historical phenomena. The elements of an observed
economic data series then reflect the magnitudes of physical or financial
transactions that have taken place between the providers and the disposers of
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that commodity in that society during successive periods of time. Observations
pertaining to the outcomes of such recurrent transactions of a commodity are
usually based upon accounting consolidations of measurements on physical or
financial flows. The initial data about the levels of production and distri-
bution are measured according to physical models of reality and are compiled
and consolidated according to the prevailing accounting theory and practices.
For example, sectoral electricity sales are ultimately based upon individual
meter readings which are then consolidated according to pervailing accounting
conventions.

Every model of data analysis prescribed by an economist must explicitly
preserve and consolidate the conditions imposed by the corresponding account-
ing model which defines the data as well as the physical nature of the obser-
vations which the data represent. The neglect of the former may lead to
implicit or explicit denial of the basic axiom about the whole being the sum
of its parts. The neglect of the latter may lead to postulation of operations
which imply adding apples and oranges.

Analyzing the time paths of a related set of economic data series is an
exercise in dynamic analysis. For such an analysis to be logically and
empirically consistent, it must preserve the static relations that hold among
the data at all times. This is a basic principle in positive dynamic analysis.
In the case of economic data series, the static relations can, as discussed

above, be classified into two general categories: accounting and physical
relations.

3. Conceptual Framework for the Interpretation of Time Variant Linear
Trend Trajectories: At any point in time there may be many factors which
influence the level of transactions of any commodity, such as population, income,
prices, costs, employment, technology etc. Each one of these factors may be
conceptualized to exert a force on the economic system under consideration with
regard to the provision and distribution of a particular commodity X. The rate
of transactions of X at any point in time, t, t <t £t + n, can then be
conceptualized as a flow velocity the magnitude of which is 8etermined by the
initial flow velocity X = X (t ) plus a series of accelerations resulting from
the joint impact of the determining forces operating on the system, described
by an acceleration function

1) d X (t) = £(tr)
dt

In general then at any point t in an interval of time t <t <t +n

t
X(t) = X, o+ S E(t) dt

t
0

2)

In the case of a time variant linear trend trajectory we are faced with a
situation where the net magnitude of the acceleration produced on the system
by the various forces operating on it remains constant within each one of a
series of successive subdomains of time, and changes in a discontinuous manner
at the turning points between the successive subdomains in question.
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Let Z =<t , £t + n > be an interval of size n years, such as January
1, 1960 through BecemBer 31, 1982. Let J = {tl, t2, ...tm} be an m element
subset of the set of end points of the annual intervals in Z, with
1 <m < n-1, such that every element of J is a turning point in Z, and

tl < t2 < ..., < tm.

Iet £ =1, 2, ... m.

It

Let DUM & = 0 if t < t%

DUM £ 1 if ¢t > t&

Then the acceleration function for a time variant linear trend trajectory
would be given by

4) f(t) = DUMY .

o ™M

a B

We may infer from the behavior of the acceleration function that there
must have been significant alterations in the operating conditions of the
system under investigation for the configuration of forces which produced
constant accelerations in the preceding subinterval of time to be replaced
by a new configuration which has produced different net acceleration. The
determination or confirmation of the actual changes in the various determin-
ants of f£(t) can be carried on through the use of known physical or account-
ing relations between the time path of the particular determinants and the
time path of X(t). However we can always define the behavior of X(t)
independently of such determinations.

B. Modeling and Adjustment of a Linear Trend Trajectory:
Substituting 4 into 1 we can express the time path trajectory of the annual
flows of X as:

m t
5) X(t) = X+ b} {a2 . DUM& . [ dat}
2 =1 tl
or
m
6) X(£) =X + I {a, . DUML . (t-tQ)}.
0 0 =1 2

Let DUME . (t-tl) = T

4

then:

m
7) X(t) =X + X a, TR
0 0 =1 A

is a linear equation in m+l < n unknowns, the m accelerations a, and Xo' a
solution to which can always be found on a case by case basis.
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In particular given n > m + 1 observations of the form

8) {Xt ‘1, T1, ... T}

one can express the time path of Xt as
-+ =

2) Xt Vt X(t)

and utilize least squares adjustment to estimate parameters mentioned above,
under a working hypothesis that the least square residuals

10) va{o\ozv}
t
nxn

with rank (V) = n.

ITII. Modeling and Assessment of Time Variant Linear Trends in Ohio Sectoral
Electricity Sales: An Application

A. The Model:Sectoral energy sales in Ohio between 1960 and 1982 can
be explained in terms of a sequence of discrete accelerations. The initial
accelerations starting from 1960 on remain constant for all sectors through
1966. At the end of 1966 there are positive increments in the accelerations
to the residential commercial and transportation sectors which then remain
constant through 1972. At the end of 1972 there are declines in the
accelerations of residential and commercial sales and an increase in industrial
sales. In the case of residential sales there is a further leveling off at
the end of 1980.

The industrial sector trends are further characterized by a positive
displacement in the trend line after 1971, and negative displacements after
1979 and 1981. The displacements after 1979 and 1981 are clearly associated
with 2.5% decline in the unemployment rate in Ohio between 1979 and 1980 and
between 1981 and 1982 respectively. An additional variable is utilized in the
industrial sector time path to measure the impact of the 1975 recession.

The sectoral sales are measured in trillion Btus. The data are from EEI
Statistical Year Book. Adjustment results are reported in Table 1. Data

are presented in Table 2.

B. Heuristic Implications-Elasticity of Consumption:

A pressing problem for state regulatory agencies is that of determining
the effect of rate hikes on the sales and, hence, on the revenues and profits
of the regulated utilities. This is posed, in traditional practice, as a quéstion
of price elasticity of demand. A dynamic concept of price elasticity of
consumption will be briefly introduced, for it may prove to be more useful and
reliable as a tool of positive analysis and as an instrument of policy planning
or implementation.
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ADJUSTMERT RESULTS FAIR

TABLE 1

THE CCOMPONENT TIME PATH MODELS

SYSTEM: SYS2 THIRD STAG
MODEL: RS
DEP VAR: ELRSBOH
PARAMETER STANDARD APPROX
VARIABLE DF ESTIMATE ERROR T RATIO PROB>| T
INTERCEPT 1 36.918647 0.655854 53.26415 0.0001
T 1 2.696636 0.159148 15.6750 0.0001
T6 1 2.996792 0.260563 11.4936 0.0001
Tiz 1 -1.326221 0.2162641 -6.1903 0.0001
T20 1 -5.523613 0.622896 -8.8677 0.0001
MODEL:  CM
DEP VAR: ELCMBOH
PARAMETER STANDARD APPROX
VARIABLE DF ESTIMATE ERROR T RATIO PROB>|T|
INTERCEPT 1 23.570376 0.863551 27.2947 0.0001
T 1 2.312229 0.207341 11.1518 0.0001
T6 1 2.783961 0.332748 8.3666 0.0001
T12 1 -2.553529 0.2446461 ~10.4466 0.0001
MODEL: TR
DEP VAR: ELTRBOH
. PARAMETER STANDARD APPROX
VARIABLE DF ESTIMATE ERROR T RATIO PROB>|T|
INTERCEPT 1 0.350718 0.014053 26.9560 0.0001
T 1 -0.033985 0.00260966 -13.0229 0.0001
T6 1 0.033985 0.00260966 13.0229 0.0001
MODEL: 1IN
DEP VAR: ELINBOH
PARAMETER STANDARD APPROX
VARIABLE DF ESTIMATE ERROR T RATIO PROB>|T]|
“INTERCEPT 1 136.994501 1.910665 71.6999 0.0061
7 1 2.016193 0.28264645 7.1386 0.0001
T12 1 3.879750 0.319797 12.1319 0.0001
DUM6 1 26.798590 3.334510 7.4370 0.0001
R&2 1 -48.077790 2.194870 -21.9046 0.0001
D75 1  -18.765125 3.973264 -4.7228 0.0002
"“MODEL:  TT
DEP VAR: ELTTBOH
PARAMETER STANDARD APPROX
YARIABLE DF ESTIMATE ERROR T RATIO PROB> T
INTERCEPT 1 195.834243 2.159149 90.6997 0.0001
T 1 6.789071 0.397532 17.0781 0.0001
T6 1 5.812738 0.431509 13.4707 0.0001
T20 1 -5.523613 0.660679 -8.3605 0.0001
DUM6 1 264.798590 3.437135 7.2149 0.0001
R82 1 -68.077790 2.2626420 -21.2506 0.0001
D75 1 -18.765125 4.0955647 -4.5818 0.0003
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14/

SYSTEM: S5YS2

RS.
CM.
TR.
IN.
iT.

RS.
cM.
TR.
IN.
T7.

RS.
CcM.
TR.
IN.
TT.

RS.
.ELCMBOH
TR.
IN.
17.

ELRSBOH
ELCMBOH
ELTRBOH
ELINBOH
ELTTBOH

ELRSBOH
ELCMBOH
ELTRBOH
ELINBOH
ELTTBOH

ELRSBOH
ELCMBOH
ELTRBOH
ELINBOH
ELTTBOH

ELRSBOH

ELTRBOH
ELINBOH
ELTTBOH

TABLE 1

ADJUSTMENT RESULTS FOR THE COMPONENT TIME PATH MODELS

RS.ELRSBOH
0.79088487
0
0
0
0
RS.ELRSBOH
1.00000000
0
0
0
0
RS.ELRSBOH
1.00000000
0
0
0
(]
RS.ELRSBOH
1.26460654
0
0
]
0

cov

COR

INV

INV

THIRD S TAGE
ARIANCE ACROSS MODELS
CM.ELCMBGH TR.ELTRBOH
: 0 0
1.48598590 ]
0 0.00062536
0 0
0 0
RELATION ACROSS MODELS

CM.ELCMBOH iR.ELTRBOH
0 0
1.00000000 ]
0 1.00000000
0 ]
0 0
CORRELATION ACROSS MODELS
CM.ELCMBOH TR.ELTRBOH
0 0
1.60000000 0
0 1.00000000
0 0
0 0

COVARIANCE ACROSS MODELS
CM.ELCMBOH TR.ELTRBOH
0 0
0.67295390 0
0 2350.94789654
0 0
0 0

WARNING: DEGREES OF FREEDOM NOT ADJUSTED FOR RESTRICTIONS

WEIGHTED MEAN SQUARE ERROR FOR SYSTEM =

_WEIGHTED R-SQUARE FOR SYSTEM = 0.9969
“ITHIS IS THE R-SQUARE THAT CORRESPONDS 70 THE APPRO

1.189%9393

WITH 99 DFS

IN.ELINBOH

¢
¢
]
17.83440644
0

IN.ELINBOH

0
]
0
1.00000000
0

IN.ELINBOH

0
0
0
1.00000000
0

IN.ELINBOH
0
0
8
0.05607139

¢

TT.ELTTBOH

0
0
0
¢
23.99092671

TT.ELTTBOH

]
0
0
0
1.60000000

TT.ELTTBOH

0
0
0
0
1.00000000

TT.ELTTBOH
4
]
¢

0
0.06168242

XIMATE F TEST ON ALL NON-INTERCEPT PARAMETERS IN THE SYSTEM.
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YEAR

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982

ELRSBONH

35.
37
39.
4l
44
47 .
51
5%.
60.
66 .
72.
76
81
88.
91.
95.
98.
105.
108.
110
115.
114.
113.

685

.737

818

.285
.220

666

.2h8

899
0385
295
232

.702
.649

814
169
604
777
874
331

.89¢0

459
030
790

TABLE

2

ONSERVATIONS ON SECTORAL ELECTRICITY CONSUMPTION LEVELS

ELCMBON

24

26 .
27.
29.
31.
36.
39.
42.
q6.
50.
58 .
62.
67 .

72

72.
76.
78.
82.
82.
85.
38.

90

92.

.2593
5453
6031
58240
1857
5084
6474
2405
0620
2266
7205
5760
1140
.3802
9827
3605
8172
7068
1609
3000
3800
.8500
5800

AHD OH THE ASSOCIATED SYSTEM STATE VARIABLES
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By definition, at any point in time t,

11) Rx(t) = Px(t). X(t)

where R_(t) is the revenues from the sales of X(t), and P_(t) is the
price of X at time t. Hence, if any two ©of the three eleflents in the
above definition are known over a historical or forecast domain in
time, then the third is also known. Differentiating both sides of 11

we get
12) da R (&) = dp_(£) X(t) +d X(t) . P (t)
at ac at x
ox
B RS s o)+ ax(e)/at L P 0 | i a peesac 4 o
ar_ (t)/dt dap (t)/at !
X p.4
oxr
14) n=1
. dR (t)/dt _
- - 1 =4 X(t)/dt P (t)
X(t) Ty , if d P(t)/dt £ 0
dPx(t)/dt dPX(t)/dt X () )

Hence, as long as the historical time paths of P(t) and X(t) are known,
so would d X(t) and dPx(t)

Ty ; so that the right hand side of 14 could be

dt
utilized to investigate the historical behavior of the elasticity of
disposition of X with regard to price. If this behavior seems to display
any regularities over specific subdomains of the historical interval of
time under consideration, further research may be conducted to investigate
possible determinants of such behavior. Similarly, forecast magnitudes of
the elasticity may be computed on the basis of provided scenarios for the
projected time paths of Px(t) and X(t).

The same procedure may easily be extended to explore the nature of
dynamic relations between price and consumption, income and consumption,
etc.

v.

Conclusion

We have developed a methodology whereby observations on annual economic

flow velocities may be characterized
that are continuous over a specified
at a finite number of points in it.

paths are interpreted to reflect the
tions or states of the system due to

in terms of linear time path trajectories
domain of time, and are nondifferentiable
The nondifferentiabilities in the time

impact of changes in the operating condi-
external or intermnal shocks, such as OPEC
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price hikes, recessions, etc., on the dynamic behavior of the system under
consideration. The simultaneous assessments of the time path of an aggregate
economic flow velocity along with alternative designations of its constitutent
components is expected to yield greater insight into the historical determin-
ants of the systemic trajectories under consideration, as well as the dynamic
regularities that may be maintained among them. Through continuous monitoring
of new observations, such a time path model (a) indicates a likely menu of
future system state scenarios, (b) provides a forecast for each specific
future scenario in the menu, starting from the most recent state of the sys-
tem, (c) provides for an early diagnosis of actual alterations in the most re-
cent state of the system, and hence allows for timely updates of the equations
of motion, and the forecasts based upon them, (d) allows for integrated analy-
ses of larger and larger numbers of systemic trajectories, connected through
definitional or functional relations, so as to both extend the scope of infor-
mation extracted from the analysis, and to permit forecasts that are consis-
tent with all the available historical information so extracted.

We applied this methodology to the modeling and assessment of the trends
in the time paths of sectoral electricity disposition levels in Ohio. The re-
sults indicate a decline in the magnitude of annual change in kWh sales in the
residential and commercial sectors from 1972 on, with further decline in the
residential trend from 1980 on. In the case of industrial sales, the increas-
ing impacts of the fluctuations in general economic conditions are emphasized
and quantified. The implications of the identified system dynamics are dis-
cussed relative to the construction of reasonable forecast secnarios for the
near future. Heuristic implications considered include a discussion of empiri-
cal definitions and possible measurement of the concepts of elasticity of dis-
position, income consumption, and price consumption relations.
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DETERMINING CONFIDENCE INTERVALS
OF LOAD FORECASTS

J. Fingerman
Department of Management
and Quantitative Methods

Roosevelt University
430 South Michigan Avenue
Chicago, Illinois 60605

Introduction

Forecasting peak loads and outputs are crucial aspects of the planning
of electricity production and generating capacity expansion. With every fore-
cast of peak or output, a forecast confidence interval or forecast probability
associated with that forecast should be determined. Unfortunately, in practice,
forecasts are seldom stated in terms of forecast intervals or multivariate re-
gions. This paper presents formulas for determining forecast intervals and
suggests methods by which the formulas may be incorprated into existing fore-
cast methodologies.

Box~Jenkins methodology

Utilities often use the methodology of Box and Jenkins to forecast econo-
metric time series such as peak loads or monthly output. Given a particular
time series of peak or output a seasonal ARIMA (p, 4, qQ)x(P, D, Q)S model may
be represented by the backshift polynomials:

C_ 4 _ 2_ - P TR -
(1 ¢lB ¢2B . ¢pB Y (1 1B B

-...- 08 g9 - A R° -
qB ) (1 1B AZB

2s_ . .-r B°%) (1-;) 4 (1-8%)Pz =
je) t

2 2s_

_ - _ Qs
(1 913 623 ..— A B )et, (1),

Q

where B is the backshift operator, th =2z g

Equation (1) is often written for simplicity in the form:

a
#B)T () _(1-B)“(1-8%)"z = 0(B)A(B) ¢ (2)
s t s t
And z_ after differencing, (l-B)d(l—BS)th = w,_, so equation (2) simplifies
even further to t

HB)T (B) w, = 8(B)A(B) e, (3)

For purposes of forecasting and determining confidence intervals of fore-
casts, the ) weights of an ARIMA model are especially useful. Essentially, the
y weights are the coefficients of an ARIMA model when it is re-written as a
strictly MA process.

There are two methods of determining the y weights: the method of direct
substitution, and the method of polynomial division. Both methods are most
easily understood by example.

Suppose the appropriate model for monthly peak is a seasonal ARIMA (0, 1, 1)x
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(0, 1, 1)12. In other words,
_ _al2 - - 12 4
(1-B) (1-B )zt (1 elB)(l AlB )et (4)

i

Equation (4) is expanded out to

N N R UL P e R P T (5)
Finally,
= - - - + e . 6
Zg T 2ot Zeo1n” Zee1s T %1 Arfeo12t @hifea13 Y S (6)
Since Z, is given by equation (6), z,_; may be written by using equation (6),
shifted back one period. Hence,
= - - - . 7
Zeol T Zeot Zeo13T Zeera T 8182 Prfee1st 818%c1g (7

Z,_ of equation (7) is now substituted directly into equation (6). This process
is Yepeated for Z_or Zy_1g7 Zi_14 2nd so on. Eventually z, will be re-written
in terms of € i=1, 2,73, E, g, ..., as far back asneedéﬁ by the forecaster.
The coefficients of the et—i are the Y weights.

The second method of determining the ¥ weights uses the original ARIMA
polynomial equation. In this particular example we again use the ARIMA (0,1,1)x
(O,l,l)12 equation (4) above.

"Solving" for zt we have

_ _ 12

(1-6.8) (1 - 4 B2
z = Et (8)
(L - B) (1 - Bl?)

In general terms, "“solving" for z, as in equation (2) above, yields

- -1 -1 ay~ 4 _xSy-D
z, [¢ ‘(BT (B)S(l B) (1-B7) G(B)A(B)S]Et. (9)
The coefficients of the polynomial in B are the Y weights.

2 3
(1 + wlB + ¢2B + ¢3B + ...)Et (10)

z
t

Or, z, =€ + wlet—l + wzet_z +‘%Et—3 + .. (1)

A
A forecast made at time t for % periods ahead, denoted z (%), is the con~
ditional expected value of equation (11) shifted % periods ahe&ad.

Et(l) = E[z oo+

KStap-k ]
(12)

For values of L >k, the expectation is zero, for values of <k, the ex-
pectation is simply the historical value of the st, In other words,

Y e N AT B LM

0 if 2>k
E(e ) =
EHAKT €k if i<k
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N
Consequently, z. (2) SPog Vo 8ei1 T Vpunfron T Vpuzfeoz T (13)

The error of forecast is the difference between the actual and the fore-
cast, namely

= - 7 14
Ctag T Prag T 2 (14)
Cerg = Crap T V1Ctag-1 T VoBrag2 Tt Y Vpi1fta (15)
The variance of the error of forecast is thus, Var(e = Ele, 12. All Box-

Jenkins models assume that the random error terms are %dentlcaff§ and indepen-
dently distributed. This means that all squared ¢'s will have expectation o2,

and all cross product terms, € i # j, will have expectation zero. Hence,
Var(et+2) reduces to a straigh%forwa}d formula
- 2 2 2
Var(e,,,) = (1 + %7 + 3 + ...+ ¥ )02, (16)
Thus, the standard error of forecast for a Box-Jenkins model is
- z i i
o, = V(1 + P VS E e 2 e ) o (17)

And hence the confidence interval of forecast, g periods ahead is

~

L U 18
Zt( ) % 9_02, (18)
2
L 2 7 Vi
2. (2) i“'%l 4 N N I R | (19)
2

U denoted the type of distribution of the fitted residuals, and 1 - g is
the confidence level of the confidence interval.

Regression analysis - single equation

We begin with the standard linear regression model y = XE.+ g, where the
vector B of parameters has been estimated by least squares. Spe01f1cally, v
is an N x 1 vector, X is an N x K matrix of exogenous variables, 5’15 akKxl
vector of estimated coefficients (parameters), and ¢ is an N x 1 vector of
mutually independent disturbances with mean zero and constant variance. The
value of the dependent variable for some future forecast period is therefore
Ye = X,8 + g, where %X, is a 1 x K vector of some future value of each exoge-
nous variable.:

The forecast of y in the future is §* = E[yv,] = §;h, and thus the forecast
error is

& . ~
ey*= xB-v,=x,8-8) -¢g, (20)
Equation (20) reveals that the error is a result of the sampling error of the
least squares coefficient estimator and error of the future disturbances. We
are assuming that the elements of €4 and € are uncorrelated, and that the
estimates of the regression coefficients and of the forecast—perlod exogenous
variables are independent: E [(§* - g*)(g* - B )] -See Theil[1971].

The forecast error, equation (20) then has the following variance, denoted

51



o4
9
*! 0‘2 " ~ v 2 17y Lt 21
9s = E [ (58 - v (5,8 - v '] = o2[x,(X'X) ‘x; + 1] (21)
Equation (21) may be generalized to the variance-covariance matrix of the
forecast by substituting X, the M x K matrix of the K exogenous variables'
values for the M future forecasted periods. I.e.

%, =Bl (xB-y0xB-y)'] = o2[x, (x'%)" 1 x} + 1] (22)

Using matrix algebra, equation (22) is somewhat better understood if
slightly re-written.

o9, = X, [oZx ™! Jxy + o1 (23)

- . ~ .
E(X'X) ! is the variance-covariance matrix of the coefficients B, which we
denote . Hence equation (23) becomes

%, = X0, + 0?1 (24)

Equation (24), like equation (20) above, reveals that the variance-co-
variance matrix of the forecast error is dependent on the sampling error of
B8, €, and the future disturbances,.ch

And thus equation (21) may be written as

2 - ' 2
0% = + 25
V. x,0x) og (25)

An important assumption underlying equations (24) and (25) is that the
future values of the explanatory variable are known with certainty, that they
are exact. Yet, in many econometric models the independent, explanatory vari-
ables are themselves forecasted into the future (say via Box-Jenkins methodology,
as above) and thus are stochastic in nature. The forecasted explanatory vari-
ables are not known with certainty but, at least, have some variance associated
with their forecasted values.

Martin Feldstein [1971] has considered this problem of econometric models
when the forecast-period explanatory variables are stochastic, and I will use
some of his results in this paper to expand and amend equation (25).

As we distinguish between v, and y*, the actual and the predlcted future
value of the dependent variable, we shall distinguish between X%, and x ¢ the
actual and the predicted future value of the vector of exogenous varlables.

The forecast error is thus

ey TV TV, = (X8 - ogy) - (%*.’é_)'
*

= §;*§ - g‘.*%. - Ey (26)

The variance of the forecast error is
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& A A

cg, =8 [(y, ~v)%] = Bl(x8-%8-¢0% . (27)
*

Through a series of matrix and expectation manipulations equation (27)
reduces to

A
o2 =x*Q';{;
Y - —

. . . \ . A
where I is the variance-covariance matrix of the estimate, Ry

+ o§+ BLf + trace (),
of X, i.e.
A N
o= [(x, - x)"(x, - x)] . (29)

Notice that equation (28) is an "expanded" version of equation (25). The
first two terms of equation (28) comprise equation (25). The last two terms
of equation (28) take into account the stochastic nature of the explanatory
variables. Or, put differently, if the explanatory variables were not estimated,
but were known, exact constants, then I would be identically zero, and equation
(28) would reduce to equation (25).

The issue then arises as to how to determine I . 2* is estimated through
some forecasting technique, but x, is unknown. Thus, the determination of
must, in itself, be estimated. The most direct and logical estimation of I is
through the use of the variance-covariance matrix of X, the historical values
of all explanatory variables. The variance~covariance matrix of X establishes
the historical variance of each explanatory variable, o2 , and the historical
covariance between explanatory variables, GX % %5

. 175

Correspondingly, the correlation matrix is obtained by dividing each entry
of the variance-covariance matrix by the appropriate pair of standard deviations.
Or, pre-~ and post-multiplying the variance-covariance matrix by the standard
deviations vector of the explanatory variables yields the correlations matrix.

To estimate I we make the following assumption: We assume that the historical
correlations between explanatory variables are -maintained in the future forecast
period. We then construct, year by year, period by period, future variance-
covariance matrices that maintain the historical correlation matrix. Each future
variance-covariance matrix is the particular I for that forecast period. And
it is that I which is then used in equation (28).

Let us consider the following example to clarify and illustrate this esti-
mate of I .

Suppose we have a model using three explanatory variables and no intercept.

» » ~ (30)
y = lel + 62x2 + B3x3 + e

where ci is known from the fitted residuals,  is determined through

A Q= og2(x'8) 1 (31)
By €
and E’ 52 is estimated by

8= @0 lxy (32)
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And let us suppose that the historical variance-covariance matrix is

25 -2 45
-2 16 3
45 3 9

Thus, the historical correlation matrix is

1 -.1 .3
0= -1 1 .25
.3 .25 1

We forecast the expl?natory variables for some future period. We obtain
~ A~
the forecasts, xl*, X2*’ x3*,
g.{ _ & [ A

D (Xl*, xz*’ X3*) (33)

We also determine the variances of each forecast. Suppose the variances are

Var(%

) =1, Var(x,,) =4, var(k,) = 2.25

The variances are the diagonal entries of the future variance-covariance
matrix % .

1 0'X X o-X X
1%2 1%3
ro= o] 4 o
X% ¥y %3
ag o 2.25
X3Xl X3x2

The ¢ are then determined so that the corresponding correlation matrix

is identical o the historical correlation matrix above, p. For example, ¢

X, X
must be -.2 so that Py x = -.1, and ¢

must be .45 so that Py = .25, 12

X
and so on. 172 173 13

By the pre- and post-multiplication of the appropriate vector, ¥ can be
determined quickly, and in this example, § is

1 -.2 .45
I =f -.2 4 .75 (34)
.45 .75 2.25

Now, having all the components of equation (28) in place; viz., equations (31),
(32), (33), and (34), we may determine aé .
)
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With U% in hand we must be cautious in its use. The confidence interval
of forecast d¥es not follow directly from the determinatign of 92 . Analytically,
we do not know the distribution of Y« Even if we assume x, and ﬁz* are normally
distributed, their product, y, = %,B,, is not automatically normally distributed.
While the confidence intervals cannot be derived analytically, they can be
approximated using computer simulation or numerical integration. Through
computer simulation the forecast distribution may be approximated, and then the
calculated 0; may be used.

*

Feldstein [p.57] suggests the use of the Tchebychev inequality which makes

no assumptions about the distribution of y,_

Pl Iy, = %] > %0 1< 1 (35)
*

InZequality (35) should be interpretted as the probability that the actual
value v will fall outside the interval §* + k0§ is less than l/kz.
*

Regression analysis - complete model

The structural form of a complete model may be written as

By + TI'x = 36
Y, X =& (36)
where B is a G x G matrix of coefficients (G denoting the number of equations
in the model), y is a G x 1 vector of endogenous, dependent variables, T is

a G x K matrix SE coefficients, x, is a K x 1 vector of explanatory variables,
and €, is a G x 1 vector of disturbances. The corresponding reduced form equa-
tion 1Is

y, = -B lrx_+ B ! 37
B x B ‘e (37)

y, = +
Mx v (38)

In this setting we are concerned not only with the forecast error variance
of each equation in reduced form, but with the between equation covariance.
Hence, a typical element of the variance-covariance matrix of forecast error
is denoted, Gy v’ and is defined by

r

I w

- 'S
o, , =B Ly, - Vo) s - vl o (39)
r s

where E is the asymptotic expectation operator.

Again, through a series of matrix and expectation manipulations, egquation
(39) reduces to

o =k, 0 %.,+ 6 _+ B oz B o+t (Q__ T ) (400t
rs = .
Yr*fé* ~r* rs —s¥% rs —r rs* race rs rsl ’

tEquation (40) is essentially identical to eguation (10) in Feldstein
[p.58]. However, Feldstein's equation has one error; there is a K? coefficient
preceding the 6rs which should be deleted. I am grateful to Professor Thomas
Yancey of the University of Illinois for bringing it to my attention.
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In equation (40)

%r* = the vector of forecasted explanatory variables in the rth
equation.

~

ﬁr = the estimated parameters of the rth equation.

Qrs = a block matrix within .

Grs = covariance of error disturbance between equation r and equation
s of the reduced form

o=@ block matrix within .

The block matrix within Q, Q. :, is determined in the following way. The
row numbers 6f the block matrix a¥e the r equation's parameters, and the column
numbers are the s equation's parameters. This block matrix is found within the
variance-covariance matrix of the parameters of the reduced form equations.
Analogously, the block matrix er is found within 5. See Figure 1 below.

t . th .
r h equation's S equation's

parameters parameters
e

th equation’
oo ed 0 ( Q }
parameters rr rs

th .
s equation's ss
parameters

Figure 1

Notice that that block matrices of @ and Q s are also illustrated in
Figure 1. Using those block matrices the™  error®® variance of the rth equation
and sth equation can be determined . I.e. o% and 0% can be determined using

d i . * *
er, er, an st, Zss' respectively r s

Notice also that when determining cé and o% equation (40) reduces to

equation (28). r* s*

With more than one equation in the model there are no longer one-dimensional
forecast intervals, rather multidimensional forecast regions. Feldstein and
others refer to Hooper and Zel)lner's [1961] definition of multidimensional forecast
regions based on Hotelling's T~ statistic. The Hooper and Zellner multidimensional
forecast regions require, among other things, that the explanatory variables be
known constants. Since we are dealing with stochastic explanatory variables,
Feldstein suggests the multidimensional analogue of the Tchebychev inequality
as a conservative approximation of multidimensional confidence regions.

rs 2 A <
plZ L oy -, -8 >R (41)
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rs, . . .
where ¢ 1is the r,s—entry of the inverse of the forecast variance-covariance.
The matrix whose construction was discussed above in equations (39) and (40)}.

For pairs of equations in the reduced form, the multidimensional region
is an ellipse, for three equations the region is an ellipsoid, etc.

Stochastic simulation

Another method by which forecast distributions and confidence intervals
may be determined is through stochastic (computer) simulation. This is done
by specifying a particular model, specifying a probability distribution for the
error terms and for each estimated coefficient. WNext, a large number of simu-
lations are performed having the computer draw (Monte Carlo fashion) values from
the specified distributions. That is, in each simulation values for the additive
error terms and the estimated coefficients are chosen at random from the corre-
sponding probability distribution.

For any particular dependent variable, the results of the simulation pro-
duce values that empirically describe the probability distribution of that
variable's forecasted value. Thus, the dispersion of the forecasts about their
mean be used to define a forecast confidence interval.

For example, with the ARIMA (O, 1, 1) x (0, 1, 1) 12 discussed above
B A 6.4 (6)
= - - - +
Ze T Zee1 T %ee12 T Fe13 T Y1t 1%c-12 7 1% %13

A A
where € "V N(O,Oz), 6. v (6 ,Og y, and AV N( A ,62 ), simulation means choosing
values %or each coef%icient and the addi%ive te¥m from their respective distri-

butions. These values are used for z . To determine z ; 2 p e

- . t+1 . . téZ g+3 .
we recursively substitute 24y zt+2, Z 43 while holding an A, fixed. A
new value for €, , is chosen at each sEage from N(O,og) Seé the eguations below

illustrating this process.

a A A s
= <4 - - - + e
Tz ) =20 V2007 7 Zogn 7 008 T Bfeian YOS t Sy

\\ﬂi;_~__l — #_,//7\_'

o~
= - - - +
then, 2, 5% Zi9% Zio10 7 Ze-117 %1%k T 81%e-10 TO1P18%k - 11 T fren

(>4

and so on. new chosen

value

After t+1, t+2, ..., t+% steps ahead of simulation, new values of 0. and
A, are chosen from their distributions and the 2 steps of simulation are re-
peated. After a sufficiently large number of simulations are taken, the fore-
cast distribution and confidence intervals can be empirically determined.

Simulating regression models is quite similar to the above simulation.
Assuming unbiased and consistent estimates have been calculated for the regression
equation(s) coefficients, the probability distributions of the coefficients and
error terms result from the distribution. So, for example, if a regression
model of peak load is of the form

~

~ A
Y = Byt B+ Bx,
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with B'\" N{ B OBZ) B v ON( Bl’GB ), B " N(BZ,UB Yy, € vN(O, 0'2)

Then x. and x_ are forecasted for some future period, and x and XZ*
have some forecast period distribution, say a normal distribution. Then a
large number of simulations are performed having the computer draw (Monte Carlo
fashion) values from the specified distributions -- in this case, values are

drawn for the coefficients, the error term, and the explanatory variables.
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LOAD FORECASTING AND GENERATING CAPACITY EXPANSION
THE ALGERIAN EXPERIENCE -~ METHODS USED AND RESULTS

N. Berrah and N. Sefta
Société Nationale de 1'Electricité et du Gaz (Algéria)

This last decade has been one of confusion for planners and forecasters
in electricity who have raised doubts about the methods used.

In developed countries it was the end of the "exponential" and
econometric models which had been so much used and corroborated by economic
growth that they had obtained the status of "laws".

In developing countries it was the explosion of the myth of the constant
or universal "non-variant" which, once determined, would predict our own
progress on the basis of the background of the more advanced countries.

The most outstanding effect of this questioning is the renewed interest
of planners in the energy forecasting methods based on an analvtical approach
(extrapolation methods and econometric models having been retrospectively
disqualified by the upset of the world energy market). New prospective
approaches have also been worked out based on the scenario method. In opposition,
during the sixties and seventies, almost all efforts were devoted to load
curve forecasting.

The experience of the SOCIETE NATIONALE DE L'ELECTRICITE ET DU GAZ
(SONELGAZ) will be described in the context of this renewal of methodology

with special at:ention being paid to the specific problems of developing
countries.

1. Forecasting Methods

Two kinds of planning studies are performed at Sonelgaz :
- long term studies (every three years) : two or three scenarios for

the development of the electricity sector over the next 20 or 30
years are examined ;

~ medium term studies {every year) : with a view to equipment decisions
for the next seven to ten years.
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i.1. Electrical Energy Forecasts

For me&ium term studies SONELGAZ has always prefered the so-called
"analytical®™ or "sectorial" method where :

majoxr
. Power consumption is broken down into the /economic sectors ;

. projects within each sector are considered so as to evaluate growth
of the sector over the study period ;

overall consumption is then estimated year by year.

Econometric methods were also used, but rather for the intellectual
satisfaction of manipulating equations and computing means, standard
deviations and confidence interwvals at 95 and 99 %.

An evaluation of the forecasting methods and a comparison of objectives
with actual consumption figuresa posteriori confirmed the rightness of
choosing the analytical method. The differences between forecasting and
reality were two to four times smaller with this method than with econometric
methods.

But for the long term, even the analytical method taking account of
future projects fell through as economic projections for 20 or 30 years
do not exist. Our first studies therefore used mainly analogical methods.

These methods presuppose that some more advanced countries, chosen for
their similarities with Algeria (climate, type of development, etc) have
follawed the same path, and that by observing their position and growth rate
we can "predict" the same things for our country 20 or 30 years hence. This
reasoning was used both overall (by referring to per capita consumption) (1)
and for individual sectors (industry, agriculture, services, etc). (2)

The limitations of these methods were already known in spite of the
fascination for a mode of development which nothing seemed able to call in
question. We therefore always considered two or three contrasting variants
80 as to cover the range of future situations.

(1) The AOKI method developed by IAEA in 1974 is an excellent illustration
of this method.

(2) UNIPEDE : International manual on medium and long term electricity
consumption forecasting methods - Paris - 1972,
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For two or three years now, following a study performed jointly with
the International Atomic Energy Agency, these forecasts are calculated
using a simulation model (Model for Analysis of Energy Demand : MAED) which
links the demand of useful and@or final energy with its major socio-economic
and technical determinants and thus helps to predict the evolution of the
electricity sector within the energy sector.

Nevertheless, the gualitative contribution of recent years should be
associated, not with the use of what is in fact a very simple mathematical
tool, but mainly with the philosophy of the method which obliges the electri-
city forecaster to spell out all the assumptions determining a proposed
consumption objective.

1.2. Load Forecasting

Load forecasting, i.e. transformation of energy objectives to the
load needed by the grid, has grown through three phases corresponding to
a growing mastery of methodology and above all to the availability of data.

During the early period, when investment was rather low and occasional
only, forecasts were made without using any model. It consisted only in
forecasting peak and base load with reference to an improvement of the load
factor and for the ratio of peak to base load. From time to time, consumption
data were examined to find the trend of seasonal,weekly and daily variations
in load. By extrapolation, a forecast of load curves and load duration curves
could be obtained.

In the second period a data file of half-hourly loads was set up so
that it was possible to use extrapolation models. The method was exactly
the same as that used for the previous manually computed forecasts but these
nodels improved the quality of results because with automatic computer it
was possible to use all available data in an exhaustive and complete
analysis.

Extrapolation models based on the approximation of the load duration
curves by polynomial curves were also tested when the first studies were
made with WASP, but they were never used for planning studies because the
distortion of the peak and base of the load duration curve, due to the
polynomial representation, were felt to be too large.

It may be noted that second period coincided with the introduction of
mathematical models for capacity expansion planning studies.
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During the third period, industrial consumers were investigated and
a detailed analysis of domestic load curves was performed, which enabled
sectorial models to be introduced, based on :

. A breakdown of consumers into "sectors", i.e. into sets bearing the
same features of modulation :

. determination of the modulation coefficients (seasonal, weekly and
daily) for each sector which enable the hourly sectorial load to be
deduced from the yearly energy ;

reconstitution of the annual load curve by adding together the
sectorial load curves.

2. Generating Capacity Expansion

Like all developing countries, Algeria went through a period of
economic problems after Independence. This was a time of stagnation or very
low growth in electricity consumption. As investments were only small and
occasional, planning was easily carried out without any need for automatic
computers and models.

In the early seventies, with the recovery of economic growth, it became
necessary to define more rigorous planning procedures using mathematical
models, mostly obtained from consultants.

2.1. Annual Simulation Models

For several years the capacity expansion studies were performed with a
simulation model (REVMAC : Révision des Machines) . This model simulates annual
operation of a given power system taking into account the characteristics
of power units and the demand to meet (represented by weekly load duration
curves). Its main aim is to define a maintenance program but it also computes
some characteristics which help.to decide whether the power system is
adequate for the demand : probable production of each. unit and corresponding
costs, probable number of short supply hours and unserved energy.

The power system was sized using an iterative procedure :

v 1.24
V4.2 :
V1 i n.a.
%.G.
v24d
vai, g
/ <V2.1.2~
Vz \\VZ,Z.
f.a,
v2.3<\/2_3.1
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V. 4 v3as
3 V}j?< .G,
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A solution V is not acceptable if it does not satisfy the previously
chosen failure criterion or if its cost is much higher than the others.

This method enabled the best of the tested variants to be identified
but without any insurance that it was the optimal one. Moreover, it was very
expensive. Some studies required the program to be run on the computer 400 times.

there
&s from 1975,/was therefore a growing interest in capacity expansion

optimisation models.

2.2. 'Power System Optimisation Models

We began to write the first.model in i1973/74. It was named DORA {Dévelop-
pement Optimal du Réseau Algérien). It can define the optimal policy for
Jeveloping the power system and the transmission grid for a 20/25 year period,
by minimising an objective function under constraints, using the linear
programming method. The study period is divided into three part :

. One period of planning (4/5 years) ;
. one period for prospective planning (4/5 years);

the final ten years, enabling the link to be made with the distant
future.

As further results it gives the optimal operating mode of the production
units during the period and the ability of the power system to satisfy demand,
even when one considers the uncertainty of consumgtion and when one simulates
deficiencies in production (e. g. failure of one production unit and one
transmission ligne, or of two production units).

This model was not much used because of the time needed to organise and
prepare the date to be introduced into the LP package and to read the results
correctly. Since 1981 a new improvement has been added' consisting of two
interfaces, before the package and after, to facilitate its utilisation.

From 1978, the studies performed with the assistance of consultants and
IAEA on the possibility of introducing nuclear power plants in the Algerian
power system have given Sonelgaz the opportunity of obtaining two other
models : MNIA (Modéle National d'Investissement - Algérie) and WASP (Wien
Automatic System Planning Package).
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The two models are very well known and have no need to be described in
this paper.

. MNIA is a simplified version, adapted to Algeria, of the Electricité
de France MNI model. Its method is optimal control, in the sense of
L. Pontryaguine, in order to optimise the power system {continuously,
not unit by unit). (1)

. WASP has also been adapted to developing countries from the model of
the Tennessee Valley Authority (TVA). The optimal solution is obtained
there by the dynamic programming method. (2)

It may be noted that the WASP model (II and III) has been the most used
one up till now. Indeed, some of its aspects are more practical (modular
structure, consideration of the power in a discrete rather than continuous
form, etc), and above all, it is much better known through the IAEA training
courses, attended by several Sonelgaz engineers.

3. First Elements for a Comparison between WASP and’MNIA

We should first comment that these elements are for comparison and
are not an evaluation of the models. They are only the first results of a.long
job started in Sonelgaz in order to obtain better knowledge of the available
models and how well they adapt to the characteristics and operating methods of
the Algerian power system. While these models are well known globally
speaking (methodology, utilisation), a lot of aspects need to be studied in
the field of modelisation.

The first step was to take one scenario {(the medium one) from the study
performed jointly by IAEA and Sonelgaz (2) and to study it with MNIA.

The first results obtained were rather different from those obtained
with the WASP model.

The global capacity installed computed by the two models is equivalent,
butthe proportions of the different types of equipment is very different as
is shown in the following table.

(1) A. Breton and F. Falgarone : Application de la théorie de la commande
optimale au choix.des équipements & Electricité de France.
(Fourth PSCC - Grenoble - Sep. 1972).

(2) cf. P.E. Molina : Long Term Forecasting of Electric load within Overall
energy demand : use of combined MAED and WASP Methodology.
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Nuclear Steam turbines | Gas turbines

1 ! T ! !
! 1 R ! ]
; ! i ] ! ] 1 !
L ST wmse | MNIa | WASP | MNIA |, WASP | MNIA |
; ; ' ! ] ] i !
, 1986, . ¢C e , 58°% 58 % 42 % 42 8 |
! t i ! ! ! ! !
' ! ! ! ! ! Doy !
, 1994 o . O , 68% | 3ty | 32% !
! ! ' ! ! ! ! !
, 1995 | 0 . 0 , 66% | 44% = 34% | 56% ;
! ! ! ! ! ! ' !
; 2000 ; 0 ; 15 % | 62s% | 42% | 38% | 43 % i
; ! ! i ! ! ! !
. 2008 | O . 46% . Tlw | 26% , 29% | 28%
!’ ! ! ! ! ! !
S 2016 0O . 53 % 73 8 18 % 27% | 29% |
' = ' ' !

!
! ! !
L g !

The data introduced in the two models are not identical but the very
slight differences cannot account on their .own for the discrepancies between

the two optimal solutions obtained using nearly equivalent criteria of
reliability.

At this stage we can only put forward hypotheses and not provide
explanations. But research is continuing with .closer examination of
differences in modelisation (simulation of operation to start with, calculation

of failure rate, accounting for residual value of equipement at the end of
the period).

3. Conclusion

In ten years, Sonelgaz has managed to set up procedures and methods for
forecasting and development of production capacity.

This experience, started off with very small ressources (2 or 3
engineers), and using qualified consultants, has been achieved pragmatically
by obtaining the necessary models (sometimes more than necessary !) and
adapting them to the particular conditions of the' grid and the data available.

The first lesson it taught us was that we should resist (not always
easy !} two temptations in the use of forecasting and planning models :
greed for more models and belief in their infallibility.
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- Models and methods cannot make up for .lack of or poor data. In general,
the more models there are and the more they become sophisticated, the
more data is required to get good quality results.

- BAn "optimal solution" is always the result of constraints, explicit
of implicit assumptions and simplification of the system for modeli-
sation purposes. Models never release the planner from his respon-
sibility. They are useful tools, considering the size and complexity
of electrical systems, but they should never be divorced from a
critical sense.

This is all the more true in developing countries, where programs are
often imported and the accepted modelisation is not always suitable for small
grids (e.g. in considering equipment reliability).
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ANNEX

SHORT PRESENTATION OF THE ELECTRIC SECTOR IN ALGERIA

Generation, transmission and distribution of electricity in Algeria
is the responsability of "LA SOCIETE NATIONALE D'ELECTRICITE ET DU GAZ"
(SONELGAZ) , a state owned company.

At present, the company has: an interconnected system covering the
north of the country and more than 80 isolated generation stations in the
south : 5 big gaz turbine plants and the others are small diesel plants.

The interconnected system operates at 220 kv transmission voltage and
distribution to the substations and to the consumption centers is through
53 kv lines. Further distribution is mainly by 33 kv lines and to a lesser
extent by 11 kv lines.

In the next table are given some data about the production and the
annual peak load.

1969 1 1973

(i)

! ! ! ¢ . .
1 ) . oy 1977 . 1982 :
'National Prod \ : : ' !
National Production 11770 1.2682 1 4411 ! 9326 !
v (GW}]’) ! . ! .f - ' !
N ! ] ! ! !
,Productlon of the . ) ) i .
(intercsincoted system ., l4a18 | 2180 | 3668 ; 7052 |
: (GWh) - p = ) o
! i ! ] ] !
,Peak load on the ) | : ) '
llnterconnected system ; 284. 5‘ - 446. 5l 726. 4, 1305,7;
! - ik i 2k <!
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INTEGRATED UTILITY PLANNING AND CONSUMER RESPONSE MODEL

George A. Backus
Jeffrey S. Amlin
Control Data Corporation
P.O. Box O
Minneapolis, Minnesota 55440

l. Introduction

The changes in demand and uncertainties in the economy has made the
regulation of electric utilities a very complicated issue. Already over-
burdened staffs are faced with yet more numerous, more difficult cases.
What is the most troubling is that the "old tools" just do not seem to
work under the current conditions. How should load management/conservation
mandates be implemented and judged? How can the large uncertainties in
inflation, demand growth and energy costs be dealt with adequately?

The Advanced Modeling/Simulation Group of the Control Data Corporation
and the Economics Group of Los Alamos National Laboratory anticipated these
problems and developed an integrated utility and consumer response model to
meet today's needs. The models are designed for planning/policy analysis.
They are placed in the public domain, even though they were produced with
private funds, to encourage their use. They are already being used by
numerous utilities and utility commissions domestically and abroad. (1) The
purpose of the models is to allows analysts and policy makers to resolve
more issues more quickly and more comprehensively. This feat is accomplished
by using causal/dynamic modeling techniques and focusing on closing the
feedback loops which describe the interaction between the utility, the
commission, and the service area. An EPRI sponsored case study comparison
of a dozen strategic planning models by U.S. electric utility company
planners agreed that future model developments should attempt to close these
loops in a dynamic model.(2) 1In a later LANL workshop on utility regulatory/
financial modeling, model builders and model users agreed that the explicit
representation of feedback was especially important.(3) The closing of these
loops has only been accomplished through the application of causal modeling
using the system dynamics technique discussed here.

A causal model is simply a description of what causes what. Consequently
it is humanly easy to understand. It requires little data because the data
is generated internally just as the relationship in the real world cause the
consequences recorded as "data" in other models. From a computerization
perspective, this also means the models are extremely fast and easy to use.
From a conceptual perspective, it requires the model builder and user to view
the "world" as an integrated entity. The model must be comprehensive and
describe how the relationship in the utility and its environment feedback on
one another. As a reward for this effort, the models can describe history
given only the conditions in, for example, 1950. Given that the model can
describe history without time series data, there is much more confidence that
the model can properly address as yet unknown problems and policies in the
future.
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2. Feedback

Figure 1 shows some key feedback loops associated with the regulatory/
construction/consumer portion of the model. This diagram shows model vari-
ables interconnected by lines of causal influence. The signs at the end of
each arrow represent the polarity of effect. For example, Figure 1 shows that
an increase in the actual price of electricity causes a decrease in the demand
for electricity in the future.

A decline in the demand for electricity causes an increase in the indi-
cated price of electricity that the utility must charge if it is to earn the
allowed revenues. This, in turn, would cause the actual price of electricity
to increase after a delay required for the regulatory body to complete
hearings. The positive feedback loop can work in the opposite direction if
an initial decline in the electricity price is followed by increased consumer
demand and an opportunity for the utility to lower rates still further while
still covering its fixed costs.

Regardless of whether they work towards rapid growth or rapid decline,
such closed chains of causal influence are called positive feedback loops.
This is the "demand spiral loop". It has two important delays that slow the
action of the loop: the regulatory lag regquired for the state commission to
alter rates; and the consumer lag in altering electricity consumption in
response to a change in the price of electricity.

Figure 1 also shows an important loop describing the utility company's
response to change in the demand for electricity. If demand increases, the
company's forecast of future capacity requirements would increase, and the
company would initiate preconstruction planning on new units. After delays
for planning and construction, these units would come on line and equate
installed capacity with the utility's estimated requirements. This loop, the
"Construction Loop", brings utility generating capacity into balance with
consumer demand. There is no guarantee, however, that this loop can maintain
this balance because its actions are slowed substantially by the long delays
required for planning and construction.

The demand spiral loop and the construction loop are interconnected as
utility planners and electricity consumers act over time to change the status
of the system. This interaction is portrayed in Figure 1 as the three com-
bined feedback loops at work in the simulation model. A new feedback loop
appears when one traces the causal influences around the outside of the
diagram.

If the demand for electricity were to increase, there would be an increase
in the company's forecast and in the initiation of planning for capacity
additions. After a delay for preconstruction planning and the delay for plant
construction, the new units would come on line and enter the company rate base.
This would increase the company's allowed revenues and the price of electricity
that must be charged under the rules of the commission. After a regulatory
delay, the actual price of electricity increase causes a decline in the demand
for electricity.
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If the demand drops too drastically, the utility is left with under-
utilized capacity. It must then go to the commission for rate relief to
cover the "excess" fixed cost with the existing reduced demand. The new
higher prices cause further decline in demand and a "spiral® of price
growth. is generated.

Note that the model variables and interconnecitons shown in Figure 1 are
only a subset of those included in the electric utility simulation model.
Indeed, a complete picture of the total model would include hundreds of feed-
back loops; only the three most important loops for our investigation are
shown in Figure 1.

Figure 2 shows an overview of the model. BAgain, the arrows show the
causal information links between components. The flow of information is
continuous and dynamic. All the important interactions affecting the utility
must be included if a useful understanding of the future and policy impacts
is to be obtained. The initial work on the utility portion of the model was

performed at LANL(1l). The demand component was developed, throughout, by CDC
staff(4).

3. Utility Sectors

The utility portion of the model, at on aggregate level, describes all
the major considerations of the entire integrated utility. Any variable in
the model is available in either tabular or graphical form during an inter-
active computer session. Policies are also changed interactively. The
results are available for any and all points in time. Table 1 shows examples
of the output often requested from the model for each sector. This tabulation
also illustrates the comprehensive capabilities of the model.

Table 1. Utility Model
Output Capabilities

Regulatory: Allowed Rate of Return, Sector Specific Prices, Rate
Base, Deferred Earnings AFUDC/CWIP Impacts, Allowed
Revenue, Allowed Expenses, Fuel Adjustment,
Regulatory Lag.

Finance: New Plant Financing, New Debt, New Common Stock Shares,
New Preferred Stock, Stock Price, Intermediate Debt,
Interest Payment, Dividends, Depreciation, Rate of
Return, Taxes, Balance Sheet, Income Statement,
Source/Use of Funds.

Production Sector: Plant Dispatch (arbitrary number of plant types) Power
Interchange, Purchase Power.

Capacity Planning: Forecasted Load Duration Curve, New Plant Planning,
New Plant Construction, Construction Delays, Plant
Cancellations, Choice of New Plant Type.

Generation: Construction Costs, AFUDC, CWIP, Plant Retirements,

Operating/Maintenance Costs, Efficiency, Fuel Costs,
T&D, Arbitrary Number of Plant Types.
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The regulatory sector of the model can inherently consider a wide
variety of regulatory policies and options. More importantly, the regulatory
sector (or any sector) can be readily modified to consider any policy.

The finance sector not only generates all the important financial
statements, it acts as a real utility finance department. It follows policies
for obtaining new funds. It seeks whatever debt or equity is needed to
satisfy its needs. If it has excess funds, it may buy back intermediate debt
or common stock or it may make short term investments or diversify. Cash
flows are explicity modeled as are the decisions which affect them.

The production sector uses a derating method to dispatch plants. It
purchases power when desired or necessary. The capacity expansion sector

decides when new plants are needed based on its perception of demand growth.
If that perception is later proved incorrect, the plant is delayed or even
cancelled -~ just like its real world counterpart does.

In the generation sector, the physical plants (by type) are built,
operated and retired. The actual physical and financial flows associated
with each plant type is explicitly simulated.

For illustrative purposes, typical selected model results for base and
low demand growth are shown in Figures 3 and 4.

4, Demand Sectors

The demand sector is also causal. It contains no elasticities as is
common to other modeling methods. In the demand sectors, energy use changes
because of new investments in efficient technologies, retrofitting activity,
budget constraints, capital stock utilization, fuel switching, cogeneration,
retirement of older buildings/equipment, and others. The capabilities of the
demand sector are summarized in Table 2 below.

In the model, the demand for energy is considered the same as any goods
or service in the economy. It is required in varying quantities to produce
output. The amount of energy demand depends on the amount of goods produced
and gquantity needed per unit. The output produced is a function of productive
capital (plants, factories, stores, homes, machines, etc.) and capital utili-
zation. Capital is accumulated by investments.

Energy demand is multifaceted. There are substantial demands for which
any fuel can be used such as for boilers and space heating. There are non-
substitutable demands for which only one fuel can be used. For example,
electro-mechanical and lighting uses of energy can be satisfied by
electricity alone.

There are also two efficiency components to the demand for energy. There
is a process efficiency which states how many BTUs of usable energy are
required per unit of output. Usable energy could mean the output heat of a
furnace or steam from a boiler. There is a thermal efficiency which states
how much input fuel is required to get the required usable energy. As fuel
costs rise, the thermal efficiency should increase as more efficient and
costly furnaces are installed. Likewise, high fuel and capital costs (and
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operating costs) lead to a higher cost of using energy. Thus, the process
efficiency should also increase and process capital made more energy efficient.
(For example by adding insulation or heat exchangers.)

Table 2
DEMAND Sector Capabilities

Load Duration Curve by sector, function, age class, and fuel at all points in
time,

Sectors: Residential, Commercial, Industrial (arbitrary number of
industrial sectors), Power Pool (firm and non-firm
demand) , Municipal (firm and non-firm demand).

Function: Process (Industrial only), Heating, Cooling, Electro-
motive (Lighting, Appliances, etc.).

Age Class: New, Middle, 01d.

Fuel: Conventional Electric, Heat Pump, Alternative Fuel
{(arbitrary number of alternatives).

Load Duration: Semi Annual (Winter/Spring, Summer/Fall).

The previously mentioned budget constraint is the fuel-specific capacity
utilization representing the short-term response of an energy user to rising
energy prices. This response takes the form of a budget constraint which
limits how much a user can afford to pay for energy in the short-term and what
temporary enerdgy saving actions can be taken (i.e., turn down the thermostat
and close off unused rooms). The overall structure of demand is shown in
Figure 5.

There is a trade-~off between efficiency and capital costs, as depicted
in Figure 6. Technology sets an upper limit of efficiency at any cost.
Further research and development efforts can move this technical limit upward
until theoretical thermal efficiencies are reached. In theory, at the margin,
the position on the efficiency/cost curves for new investments (equipment) is
determined by balancing capital and operating costs against efficiency and
fuel costs. This balance minimizes the cost of using energy.

Investment in each type of capital stock are allocated according to the
cost of using each type of energy. This cost is the perceived cost to the
user. It includes risk, the annualized capital costs, operating costs,
delivered marginal fuel costs and any indirect costs (such as perceived social
costs or indirect use costs).

Not all investment funds go to the least expensive energy form. Uncer=-
tainty, regional variations and limited knowledge make the perceived price a
distribution. The investments going to any fuel type are then proportional
to the fraction of times one fuel is perceived as less expensive than all
others. This is illustrated in Figure 7.
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The demand sector describes both the short-term and long=-term impacts
of regulatory or utility policies. These impacts, in turn, affect the utility
and often lead to further regulatory intervention. Therefore, the integrated

utility model is especially valuable for the analysis of policies before they
are implemented.

The integrated model generates results that are often "missed”" by other
approaches. The model indicates that many conservation programs reduce the
utility load factor because they affect the base load more than the peak
demand. Further, much of the proposed conservation legislation, leads to
increased costs for the non-participants in the conservation program. Real
"no-loser's" legislation is usually not cost effective.

Finally, the efficiency curves in Figure 6, imply that after some price
level, additional price increases can cause only minimal additional conserva-
tion. Therefore, load management/conservation is a finite resource. Once it
is used up, energy demand is in lock stop with economic output. Both the
utility and the consumer will lose any flexibility they have in responding
to energy price changes.

5. Conclusion

The integrated utility model is an important tool in todays regulatory
environment. The model described here satisfies the need to analyze a wide
variety of policies/scenarios in a fast, self consistent manner. Subsidies,
rate schedules, taxation, conservation, load management, rate base additions,
and many other policies can be easily tested.

Current contracts that use the integrated model will lead to the develop-
ment of macroeconomic and utility diversification sectors. The macroeconomic
sector will allow analysts to determine the impact of policies on industrial
competitiveness and possible migration. The subsequent impacts on commercial
activity and labor (residential sector) will also be simulated.

As the few remaining generating stations under construction are brought
on line, the utilities will have strongly positive cash flows and little
need for "utility" investment funds. In their efforts to use the cash
efficiently, several regulatory-related concerns will need to be simulated.
The integrated model can evolve, as necessary, to serve those needs.
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T. Introduction.

One of the main obligations of a utility is to meet its customers' load
demands. For electric utilities in particular, this obligation requires
the development of rigorous procedures for forecasting future load growth.
Historically, load forecasters have relied on two types of forecasting
models. The first method is the traditional structural econometric model,
and the second is the time-series model fitting approach. Each of these two
methodologies has its own merits and drawbacks.

Through the structural econometric model, the analyst can directly
employ the causal relationships suggested by economic demand theory. In
other words, the load forecasting model is often stated as a derived demand
model where economic and demographic variables are used to "explain" the
customer's demand for electricity. For applied forecasting work, however,
econometric models may not always be plausible due to the lack of data on
certain explanatory (theoretically causal) variables or due to the diffi-
culty of forecasting the explanatory variables.

Time-series models are essentially a sophisticated method of extrapo-
lation, where loads are forecasted from current and past load levels. The
problems associated with explanatory variables are thus avoided; however, no
insights into causal relationships or elasticity effects are obtained. In
addition, the time series approach is quite sensitive to shifts in demand,
whereas {(hopefully) the econometric model can account for such shifts via
its causal variables.

Frequently analysts might prefer one type of model over the other due to
the above reasons; however, a load forecaster may choose between an econo-
metric model and a time-series model merely on the basis of forecasting
accuracy. The usual practice is to determine which is the better or best
forecast by means of some criterion such as mean square error. The selected
model and its resulting forecasts are then used and the other model(s) and
forecasts are discarded. By discarding what is considered to be the poorer
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forecast(s), however, some useful information is often lost. It is fre-
quently the case that a composite (combined) forecast, i.e., some combination
of the two or more independent Toad forecasts, proves to be superior to the
"best" of the single forecasts.

This paper examines alternative procedures for obtaining linear compo-
site load predictions from two independent load predictors or forecast
series. Three formulations of composite predictions are considered: (i) a
single fixed combination weight, w, where w is the weight attached to one of
the independent forecasts, 1-w is the weight attached to the other, and w is
assumed to be bounded by zero and one; (ii) two fixed weights, wy and wy,
which are not constrained in magnitude and are considered to be jointly
optimal; and (iii) a single time varying weight, wy, which allows for the
relative efficiency of the two independent forecasts varying with time, t.
Five alternative means of estimating these combination weights are explored
in the paper. First a least squares estimator is specified for the simple
fixed weight w, and then a minimum variance (in terms of the composite pre-
diction error) estimator of w is presented. An estimator for the jointly
optimal weights, wy and wp, is developed using an Aitken two-state least
squares procedure. Finai%y, two alternative methods for estimating the time
varying weight are discussed. The first allows for a gradual adjustment in
the weighting factor, wg, and the second allows the forecaster to specify
the importance of the most recent forecast errors (i.e., the forecaster may
wish to assign less importance to the most recent errors which may be the
result of an unusual or large disturbance). The composite load forecasting
procedures are illustrated using hypothetical examples of an econometric
load forecasting model and a Box-Jenkins (ARIMA) load forecasting model.
Before addressing the composite load forecasting procedures, techniques for
evaluating forecasts are discussed in the next section. The concluding sec-
tion outlines possible problems with composite load forecasting procedures.

2. Evaluation of Forecasts.

The desirable properties of economic forecasts and evaluation procedures
are covered in detail elsewhere (Granger and Newbold, 1973; Dhrymes et al.,
1972: Theil, 1961 and 1966); therefore, only the basic features of selected
means for evaluation will be discussed here. Before delving into evalua-
tions, however, it seems fruitful to distinguish between the evaluation of a

forecasting equation using sample period data and using post-sample period
data.

Empirical models are often evaluated by estimating the values of the
endogenous variables over the sample period employed to estimate the model.
Let z¢, t=1, ..., n, denote the observations on the endogenous
variable, and let the observations of the h exogenous variables used for
estimation be X7ty Xpt, +ovs Xpg, t =1, ..., n.o It is assumed that an
empirical estimation procedure is used to obtain estimates by, bo, ..., by
of the parameters B8y, Bo, ..., B, from the following relationship:

Z=XB + u, (2.1)

where Z s a nx1 vector of observations on the endogenous variable, X
is a nxh matrix of observations on the exogenous variables, B is a hxl
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vector of unknown parameters, and u is a nx1 vector of unobserved
disturbance terms. Given the vector of parameter estimates, b, sample
period explanations of the endogenous variables can be obtained, i.e.,

A

7 = ¥ (2.2)

Ha
where 7 is a nx1 vector of sample period explanations, ?t, t=1, oo,
n. Since the sample series, z¢, t =1, ..., n, was used to estimate the
model, the values 2z are not forecasts and shall be referred to as sample
period estimations or explanations. It follows that the error vector for
the sample period is obtained from

N 4
e = 1 -1 , (2.3)
where e is a nx1 vector of error terms ej, €2, ..., ep.

When convenient some sample period data, endogenous and exogenous
variables, should be "saved" or omitted from estimation. These saved
observations can then be used to test the forecasting performance of the
estimated model. Furthermore, since the saved observations on the endogenous
variables were not used in estimating the parameters of the model, their
estimated values will be forecasts. Let us assume that there is a post-
construction sample (Dhrymes, et al., 1972, p. 306) of m observations,
i.ee, Zp+ls Zn+2s -.o» ZN, Where N = n + m. These extra observations
may be the m time series points following, say, day n, or they may be
m additional cross-section observations at the same point in time. Using
the parameters obtained from the sample period data, the post-construction
sample forecasts are

&
Zp = Xob (2.4)

A
where 7, 1is a mx1 vector of forecasts, Xp is a mxh matrix of
post-construction observations on the exogenous variables, and b is as
defined before. It follows that the post-construction forecast errors are

A
ep = Zp - Zp N (2-5)

where e, is a mx1 vector of forecast errors and Z, is a mx]
vector of actual values of the endogenous variables for the post-construc-
tion sample.

Five general types of criteria or measures for evaluating econometric
models, and more specifically forecasting models, have been outlined by
Dhrymes et al. (1972): (1) Single-variable measures or point criteria,

(2) tracking measures, (3) error decompositions, (4) comparative errors, and
(5) cyclical and dynamic properties. Since these criteria have been exten-
sively discussed in the references cited above, they will only be briefly
outlined here.

Single-variable measures include, among others, the mean forecast

error, the mean absolute forecast error, and the mean squared error of the
forecasts (the average of the forecasting errors). Each of these measures
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collapses the series of forecast errors into a scalar measure. Undoubtedly
the most popular is the mean squared error (MSE) or the root mean squared
error (RMSE}, (Granger and Newbold, 1973, p. 39; Dhrymes et al., 1972,

p. 306), which may be written as

- 172 = (1 & 2,41/2
RMSE (MSE) (m €§1 ey ) . (2.6)
The use of the RMSE as a measure of forecast quality arises from the general
specification of a least-squares criterion. More specifically, a forecaster
may be pictured as desiring to minimize the loss function

L(B, b) = E[Z-E(D))CIZ-E(D)] (2.7)

where C 1is a symmetric positive definite matrix which allows for the
possibility of giving different weights to errors at different observation
points.] In general C s not known and is substituted with an identity
matrix..

In contrast to measures Tike the RMSE, tracking measures examine
different segments of the forecast series. For instance, the ability of a
model to forecast turning points is often listed as a desirable criterion.
Nelson (1972) argues, however, that "turning point errors are of no special
interest in and of themselves" in that they are only associated with Targe
disturbances in the predicted series. In other words, success in antici-
pating turning points can be attributed to success in accuracy. Thus, Nelson
feels we should not restrict our attention to turning points but rather to
accurate prediction of large disturbances and, therefore, should concern
ourselves with minimization of MSE. Tracking criteria, nevertheless, offer

an intgresting evaluation of forecasting errors and should not be entirely
ignored.

The third category of evaluation measures, i.e., error decompositions,
consists of estimates of the bias and variance of forecast errors, errors in
start-up position versus errors in the predicted changes, and identification
of model subsectors transmitting errors to other sectors. An extensive
discussion of decomposing the average squared error or MSE into various
measures is given by Theil (1961). Granger and Newbold (1973) present a
critical discussion on the usefulness of Theil's measures.

Comparative errors measurements include the comparison of the forecast-
ing errors of one's model with the errors of various "naive" forecasts, such
as, a simple Tinear trend or using last period's observation to predict next
period's, etc. Dhrymes et al., (1972) suggest using Box-Jenkins or ARMA
models as a more rigorous alternative to naive models. It can be demon-
strated, however, that the ARMA model can be derived from the structural

1/ Tnis substitution is justifiable as long as control variables are not
involved and the model is not used directly for decision-making purposes.

In a practical application, however, any notions of loss should be incorpor-
ated in C.
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form and is, thus, not such a naive process. Comparisons may also be made
with judgmental, consensus, or other non-economic forecasts or with other
econometric forecasts.

The cyclical and dynamic properties of forecasting errors are the last
type of evaluation measurements mentioned above. For a dynamic model to be
stable the covariance matrix of the forecast errors must be composed of
finite elements. Box and Jenkins (1976) have suggested using spectral
techniques to test the estimated residual error series for serial correlation
and to see if it significantly differs from a white noise. The relationship
between the forecasts and the original series may also be examined using
cross-spectral analysis techniques.

As can be seen from the above brief outline, various measurements are
available for evaluating forecasts. For the purposes of this expository
paper it was felt that it would be sufficient to use a single-variable
measure; i.e., the RMSE.

3. The Combination of Forecasts.

Given a situation in which there are two (or more) forecasts for the
same event, the frequent practice is to determine which is the better (or
best) forecast by means of some criterion such as RMSE. The better forecast
is then used, and the other is discarded. By discarding the poorer forecast,
however, some useful information is often lost. It is often the case that a
combined forecast, i.e., some combination of the two independent forecasts,
proves to be superior to the "best" of the two single ones, (Bates and
Granger, 1969).

In short, relative accuracy is not an appropriate basis
for choosing one prediction to the exclusion of the
other; rather, even a very inaccurate prediction would
generally be included in a minimum variance composite.
(Nelson, 1972, p. 911).

Let us assume there are two predictors or forecast series, Pqy¢ and
Por, t=1,2, ..., T, which produce forecast errors eyt and ey,
t=1,2, ..., T. A linear composite prediction using these two predictors
may be written as

Iy = wiP1g *+ woPpy + up (3.1)

where Zy 1is the actual value for period t, wy and wp are fixed
coefficients, and ut is the composite prediction error. In the case that
both Py¢ and Ppy are conditionally unbiased and the forecast errors

are bivariate stationary (Nelson, 1972, p. 910; Granger and Newbold, 1973,
p. 41), then (3.7) may be rewritten as

g = wPyg + (1 - w)Por + ug , (3.2)
where w 1is a single fixed combination weight. If 0 £ w £ 1, then w
would provide a useful measure of the relative efficiency of the two
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independent forecasts, Pyy and Ppi. Granger and Newbold (1973, p. 42)
have pointed out, however, that unfortunately this restriction on w need
not hold either in the sample or the population case. Earlier empirical
applications by the senior author of this paper have lent support to this
conclusion.

The coefficient w in (3.2) is assumed to be fixed for different values
of t. Given that the relative efficiency of the two independent forecasts,
i.e., Pyp and Poy, may vary with t, it may be desirable to re-state
(3.2) with a combination weight that changes with t, i.e.,

Zy = wgPye + (1 —wt)PZt + Ut . (3.3)

In this situation, the value of the combination weight is allowed to change
as evidence is accumulated about the relative performance of the two inde-
pendent forecasts, (Bates and Granger, 1969, p. 453).

Five alternative means of estimating the combination weights discussed

above will be explored in this paper. First, the simple fixed weight

n (3.2) will be estimated using a least squares criterion and then using a
minimum variance criterion. The jointly optimal weights in (3.1), i.e.,
wy and wp, will then be estimated employing a two-stage least squares
procedure. Finally, the time varying weight wy will be estimated by two
alternative methods. Given this brief discussion of composite forecasts,
the estimation procedures to be used are individually discussed below.

4. Linear Composite Prediction with Single Weight

The Teast squares estimate of w in (3.2), i.e., that estimate which
minimizes the sum of squared composite errors or

2: s
t]e

where ect = Iy - Pet and Pet s the composite forecast estimate of
Iy, s given by

& (P1g - Por)(Z¢ - Ppy) (4.7)
Z (Pg - Py)¢

It is easily seen that W 1is no more than the coefficient of the regression
of Pgt prediction errors on the difference between the two predictions,
i.e., Pyt - Pot. Obviously, the greater the ability of the difference
between the two independent predictions to account for the prediction errors
of Po¢, the larger will be the weight given to Py¢, i.e., the closer W
will be to one. Moreover, if all of the information prov1ded by Po¢ s
already incorporated in Py¢, then W should be approximately equal to
one,

=2

An alternative to the minimization of the sum of errors squared is the
minimization of the variance of the combined forecast errors, v%, which can
be written as
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vg = wlvi o+ (1 - w2 ve + 2rwvy (1 - wivp , (4.2)

where v% and v% are the variances of the two individual forecast errors
and r s the correlation coefficient between the errors in the first set

of forecasts and those in the second set, (Bates and Granger, 1969, p. 453).
It can easily be shown that the minimum variance estimate for w 1is given by

oo SB-TSiSy (4.1)
S48 + S8 - 2FS1SH

where S¢ and S2 are the sample variance of eyt and epy respectively
and r is the sample correlation between ey and ept, %Granger and
Newbold, 1973, p. 41; Nelson, 1972, p. 911).

5. Linear Composite Prediction with Jointly Optimal Weights

The composite forecast given by the above combination weight estimates
may not be optimal for a decision maker whose objective is to select weights
which minimize expected loss, (Nelson, 1972, p. 912). Since in general the
particular loss function will be unknown, Nelson has suggested incorporating
the covariance matrix of composite errors in the loss function, i.e.,

L = uo' u, (5.1)
where u is the vector of errors across variables and Q is the covariance
matrix of the composite error terms in (3.1). 1In order to minimize the
average loss given by function (5.1), separate parameters for Pyt and

Poy, i.e., wy and wp as in (3.1), can be estimated by Aitken's
generalized least squares. Obviously, Q 1is unknown, therefore, the error
estimates obtained from applying OLS to (3.1) can be used to estimate Q
along the lines of Zellner's (1962) method for seemingly unrelated regress-
ions. It follows that the estimates for wy and wp may be expressed

as
‘;?f} = (p'Q-1p)-1 pr §-1 72 (5.2)
Wo ?

where P is a Tx2 matrix of the independent forecasts Pyy and Py,
is the estimate for Q, and 7 1is the Tx1 vector of the actual values
J

6. Linear Composite Prediction with Time Varying Weight

The previous methods for obtaining composite forecasts have not allowed
the weighting parameters to vary with time. As discussed earlier it seems
reasonable to expect that the optimal value of the estimate for w would
change as evidence was accumulated about the relative performance of the two
original forecasts, (Bates and Granger, 1969). Moreover, the relative
efficiency of the two forecasts may be reversed during different times of
the year, i.e., Pyt may give more accurate forecasts early in the season
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and Poy may be relatively superior later in the season. In such cases,
the linear composite prediction may be viewed as given in (3.3). Two
methods for estimating the changing weight w¢ will be explored in this
paper. It is assumed that prior to employing these methods that an estimate
of the constant weight parameter, say, w*, has been previously obtained
using either (4.1) or (4.3). This estimate will serve as the estimate for
wg at t=1. Given this initial estimate, wjy = w* , two alternative
methods are:

E
(a) Wat = 2t Lt =2,3, ., T (6.1)
Eve + Ept
where
h-1 )
Eop, = &
2h 2, (eat)
and
Erp = % (e14)2
h Z, (et ;
(b) Wpt = xWpeo1 + (1 - %) Eat , t=2,3 .., T, (6.2
E1g + Ep¢

where x is a constant of value between zero and one, {Bates and Granger,
1969, p. 454), Method (a) allows for a gradual adjustment in the weighting
factor. The value of the constant factor x will depend upon the importance
the forecaster attaches to the most recent forecast error. Bates and Granger
(1969) indicated that in some instances, they found a negative value of x

to give the best results - obviously, the choice of a value for x is not
straightforward. In a forecasting situation, one may not have the oppor-
tunity to experiment with different values, i.e., time may not permit such
experimentation. Moreover, the forecaster's, or more importantly the
decision-maker's, (if the forecasts are to be used for decision-making)
preferences may dictate the value or range of values for x. If the

constant factor x is assigned a relatively large value, say, .70, then

this it may be interpreted as a preference for assigning less weight to the
most recent errors which may be the result of an unusual or large distur-
bance. In other words, a sudden decrease or increase in the individual
forecast errors will not have a large influence on the estimated value for

Wht
7. Combining Econometric and ARIMA Forecasts.

The introductory section contained a brief comparison of traditional
econometric and time-series or ARIMA forecasting models. Given that each
technique has advantages and disadvantages, a load forecaster may wish to
combine econometric and ARIMA forecasts using one or more of the procedures
discussed above. Frequently ARIMA forecasts are relatively more accurate in
the short-term. In contrast, econometric models are often able to better
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predict more long-term economic shifts due to the "built-in" causality in
their structure. Thus, a composite model 1ike (3.3) may be preferable in
this case in order to allow the "importance" of each model to change over
time.

8. Conclusion.

The concept of combining forecasts is certainly not new to the general
theoretical forecasting Titerature; various applications have also been
reported. To the authors' knowledge, however, composite forecasts have
not been employed in load forecasting. The application of the procedures
discussed in this paper to load forecasting is certainly worth pursuing.

Nevertheless, the load forecaster is given a word of caution. As noted
in Oliveira (1978), composite forecasts will not always be more accurate
than individual forecasts. The properties discussed in this paper are
theoretical statistical propeties; thus, there will be random deviations
from the general tendencies. In other words, for some time periods or
observations one might be more accurate by using an individual forecast.
The load forecaster is encouraged to combine the composite forecasting
procedures outlined in this paper with "professional judgment," as one
should do with any statistical model.
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I. Introduction

The electric load forecast is the primary input to the
generating capacity planning process. But without knowing the
uncertainty surrounding forecasted demand, the capacity planning
model cannot incorporate the optimal amount of flexibility into
its capacity plan. Sensitivity analysis enables the model user
to quantify the uncertainty of the model's outputs.

Sensitivity testing is defined by a Congressional manual on
simulation modeling as the "running of a simulation model by
successively changing the status of the system...and comparing
the model outputs to determine the effects of these changes”™
(Congress 1975, p. 129). Such testing provides the model user
with five capabilities:

1. To quantify the uncertainty of the model's output;

2. To identify the sources of uncertainty and thus help
to focus data gathering and model development
efforts;

3. To debug the model by exposing errors in the coding
and logic;

4., To search the model for new behavior modes;

5. To search for a set of parameter assumptions which
will generate preselected results.

Sensitivity analysis is often considered to be an important
step in the construction of a computer model. However, the
following attributes of energy forecasting and electric utililty
planning models make sensitivity analysis difficult:

1. There are a large number of model parameters;

2. The output generated may consist of patterns which
vary with time;

3. The cost of running the model a large number of
times is high.
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A methodology for structuring and facilitating sensitivity
analysis was developed at the Los Alamos National Laboratory and
verified by Control Data Corporation. The methodology and the
software implentation are referred to as the "HYPERSENS" system,
because of the use of the Latin hypercube sampling procedure. The
HYPERSENS system can be applied to any computer code or
simulation model: however the current implementation is for
simulation models written in the DYNAMO language.

I1. Tolerance Intervals on U.S. 0il and Gas Consumption
by Electric Utilities

A. HYPERSENS Procedure

In a typical application of the HYPERSENS system, the
analysis begins with the selection of the model parameters to be
examined. Each input parameter must be described by its
probability distribution and range of plausible values. The
analyst selects the desired sample size for the experiment, which
will equal the number of model runs. To determine the parameter
values to be used in each computer experiment, the range of each
input variable is divided into N equal intervals. Then, a value
is selected from each interval according to its conditional
distribution, and values are assigned at random to the N model
runs.

The computer experiments are run using the assigned parameter
values, and the results are stored along with the information on
the input values and in each calculation. HYPERSENS uses this
information to identify influential input parameters.

Indications of the relative importance of different inputs are
found using the partial rank correlation coefficient (PRCC) with
critical values from the normal correlation coefficient. Time
plots of the PRCC's allow the analyst to select the most
influential inputs during different parts of a simulation.

The analyst determines whether the most important parameters
are independent. If those parameters are independent, then the
confidence bounds of the model's outputs may be interpreted in
probabilistic terms. Otherwise the model must be altered to
remove the correlation among the most important input parameters.
With the new model and new parameters, sensitivity testing starts
again., The iterative process of the HYPERSENS system is
illustrated in Figure 1.

B. The Illustrative Example
A system dynamics model designed to simulate the operations

of a hypothetical investor-owned utility company subject to
rate-of-return regulation by state public service commissions
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will be used to demonstrate the HYPERSENS procedure. The model
contains 45 parameters of interest with some unknown degree of
influence and uncertainty.

With the parameter ranges as a starting point, a set of
twenty simulation experiments were designed using the Latin
hypercube sample rules to ensure full coverage of the
45-dimensional input space. The final result of the sampling
analysis is a set of instructions for twenty computer simulations
with different parameter values for each of the 45 parameters.

The information obtained from the twenty simulations is
summarized in Figure 2A, which shows the statistics for the first
iteration analysis of the 0il and Gas Used in Electricity
Generation (OUEG). Figure 22 shows the mean, maximum, and
minimum results from the twenty experiments. The variability
among the different simulations is apparent from comparing the
minimum and maximum values, and also from the behavior of the
standard deviation over time. The statistics show that the
nominal and mean results are guite close, and that the maximum
value is almost twice as large as the mean in the year 1990.
Notice that the Figure 2A information begins in the year
1980~--the first year of the model projections into the future.
Thus, the ranges of plausibility on input parameters must be

START

RANGE OF PLAUSIBILITY ON DESIGN SET OF RERUNS PERFORM RERUNS
ORIGINAL SET OF INPUTS TO USING LATIN HYPERCUBE OF ELECTRIC UTILITY
THE ELECTRIC UTILITY MODEL PROCEDURES MODEL

NEW SET OF PARAMETERS CALCULATE PARTIAL
AND THEIR RANGES OF CORRELATION COEFFICIENTS CALCULATE
PLAUSIBILITY FOR TO SELECT MOST IMPORTANT TOLERANCE
ALTERED ELECTRIC INPUTS TO ELECTRIC UTILITY INTERVALS
UTILITY MODEL MODEL

TOP INPUTS .
“\JNDEPENDENT

INTERPRET

Es..,___.,_) TOLERANCE

INTERVALS

ALTER THE ELECTRIC

UTILITY MODEL TO o
REMOVE THE CORRELATION T

AMONG _TOP INPUTS

Fig. 1 Overview of the iterative application of Latin Hypercube Sampling
to obtain interpretable tolerance intervals on model output.
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Fig. 2A
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Summary statistics from the first iteration analysis.

Fig. 2B

Tolerance intervals from the first iteration analysis.
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expressed in terms of an uncertain estimate of parameters in
future vyears.

Figure 2B shows the tolerance intervals obtained from the
first iteration analysis of OUEG. These limits encompass the
range of values that could be expected in either 75% or 90% of
the simulation runs of the model.

Figure 2C gives the partial correlation coefficients between
the value of OUEG in a given year and the values of the important
input parameters. Strong positive or negative correlation
indicates that the particular input parameter is especially
influential during that time period. Figure 2C shows that the
Indicated Demand Growth Rate Constant (IDGRC) is positively
correlated with OUEG in the 1980's.,

The inflation rate (INFLR) is also highly correlated with
OUEG, but in a pattern the opposite of IDGRC. A third input
which exhibits strong influence on OUEG is the Desired Reserve
Margin Contant (DRMC).

Three additional inputs are found to have a strong influence
on OUEG during the 1980's: the availability factor for coal
plants (NCAFC), for nuclear plants (LWAFC), and coal plant
operating lifetime (NCCL).

The Figure 2 results do not reveal any spurious tendencies,
or illogical results. One can only interpret the tolerance
intervals in Figure 2B in probabilistic terms, however, if the
most important inputs to the model are uncorrelated. This is not
the case. Two collinearities exist between the top six inputs
identified in Figure 2C. First, DRMC cannot be specified
independently from the availability factors for the nuclear and
coal power plant