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h i g h l i g h t s g r a p h i c a l a b s t r a c t 

• Social-environmental systems (SES) are 
complex adaptive systems (CAS). 

• CAS handles the high dimensionality and 
complexity challenges in SES. 

• CAS helps evaluate alternative pathways 
or theories in sustainability. 

• Agent-based models help mechanistic 
modeling of SES with sustainability chal- 
lenges. 

• Agents’ behaviors can be better derived 
by artificial intelligence and data science 
tools. 
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a b s t r a c t 

A significant number and range of challenges besetting sustainability can be traced to the actions and inter- 
actions of multiple autonomous agents (people mostly) and the entities they create (e.g., institutions, policies, 
social network) in the corresponding social-environmental systems (SES). To address these challenges, we need 
to understand decisions made and actions taken by agents, the outcomes of their actions, including the feedbacks 
on the corresponding agents and environment. The science of complex adaptive systems —complex adaptive sys- 
tems (CAS) science —has a significant potential to handle such challenges. We address the advantages of CAS 
science for sustainability by identifying the key elements and challenges in sustainability science, the generic 
features of CAS, and the key advances and challenges in modeling CAS. Artificial intelligence and data science 
combined with agent-based modeling promise to improve understanding of agents’ behaviors, detect SES struc- 
tures, and formulate SES mechanisms. 
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. Introduction 

The Anthropocene witnesses unprecedented conditions and chal-
enges about human-environment relationships ( Steffen et al., 2015 ;
urner, 2022 ). These conditions are created by the escalating de-
ands placed on the global environment by the largest population
ith the highest level of material consumption in the history of hu-
ankind. They generate challenges that range from equitable consump-

ion ( Costanza et al., 2014 ; United Nations, 2016 ) to the consequences of
onsumption on the functioning of the Earth system ( Lade et al., 2020 ).
ogether, these challenges have emboldened the search for sustainabil-

ty —meeting the material needs of the humankind more equitably and
or future generations, while not threatening the capacity of Earth sys-
em functioning and delivering the ecosystem services ( Board on Sus-
ainable Development, National Research Council, 1999 ; Kates et al.,
001 ; The World Commission on Environment and Development, 1987 ).
his search, in turn, has given rise to sustainability science, a use-

nspired research field seeking to advance understanding about criti-
al elements that promote sustainable development ( Bettencourt and
aur, 2011 ; Clark and Harley, 2020 ; Kates, 2011 ). It constitutes “a new
ocial contract for science ” ( Lubchenco, 1998 ), akin to agricultural or
edical research ( Kates, 2011 ), in which the approach to problem solv-

ng remains within the explanatory structure and methods of science but
aintains a normative element —the goal of sustainability ( Clark and
arley, 2020 ). 

Human-environment interactions reside at the core of the sus-
ainability science, and are addressed as social-environmental sys-
ems (SESs: aka social-ecological systems, coupled human and nat-
ral systems, or nature–society systems ( Liu et al., 2007a , 2007b ;
chlüter et al., 2023a )), which behave as complex adaptive systems
CAS) ( Preiser et al., 2018 ; Section 3 ) in many, if not most, in-
tances. Comprehensive synthesis articles ( Bettencourt and Kaur, 2011 ;
lark and Harley, 2020 ; Kates, 2011 ; Liu et al., 2015 , 2018 ) and online
epertoires ( Harley and Clark, 2020 ; SDSN Association 2019 ) indicate
hat SES maintain at least three overarching elements: actors, environ-
ent, and outcome (detail in Supplemental file A) ( Kates, 2011 ). These

hree elements correspond to agents, environment, and emergence in
AS, although these elements are more restrictive than those to which
AS at large has addressed (detail in Supplemental file B). In SES science
gents/actors must be people-based (i.e., from individuals to states), en-
ironment must include biophysical and built systems, and the outcome
eed not be emergent. Understanding the interactions in question and
heir outcomes could be enhanced for many of the problems addressed
n sustainability science by improved engagement with the concepts of
AS and its tools and methods: agent-based modeling (ABM), artificial

ntelligence (AI), and data science. 
This article is structured as follows. The theoretical background,

ection 2 , is comprised of three parts. Section 2.1 identifies four
ajor challenges in sustainability science, namely high dimensional-

ty/complexity, the need for systems integration, choosing from alternative

heories , and the need to have temporal progression . CAS science and its ma-
or method, ABM, provide unique strengths to tackle these challenges.
ection 2.2 demonstrates that despite substantial efforts over the last
wo decades, CAS/ABM is quite underrepresented as a means to address
esearch problems in sustainability science. As such, an articulation of
he synergies to be gained by more attention to the linkages in ques-
ion constitutes Section 2.3 . This articulation, Section 3 , identifies what
AS and ABM are and why/how they can contribute to the four chal-

enges of sustainability ( Sections 3.1 through 3.4). These contributions
otwithstanding, three major constraints of CAS and ABM, are identi-
ed and discussed ( Section 4 ): difficulties in dealing with system struc-
ure and cross-scale influences, detecting causality, and using qualitative
ata. AI offers a means to elegantly handle these constraints. Finally,
ection 5 points to future directions of CAS/ABM in sustainability sci-
nce. 
2

. Theoretical background 

.1. Central challenges in sustainability science 

Several central challenges emerge in sustainability science, pursuant
o its goal of sustainable development ( Clark and Harley, 2020 ), that are
revalent in the synthesis articles and online repertoires noted above. It
s difficult, if not impossible, to present a full spectrum of theories, ap-
roaches, advances, findings, and potential development pathways per-
aining to the challenges in question. Here, we focus on several broad
hallenges to sustainability science in which CAS (similar to agent-based
omplex systems as labeled by Grimm and colleagues, Grimm et al.,
005 ) science and ABM may provide potentials to resolve, especially
n light of AI. CAS science examines “dynamic networks of many inter-
cting agents ” ( Grimm et al., 2005 ) with an emphasis on information
bout entities at a lower level(s) of the system, theories about their be-
avior, and the emergence of system-level properties related to partic-
lar questions ( Axelrod and Cohen, 1999 ; Holland, 1992 ). Such atten-
ion dates back to at least 1970s (details in Section 3.1 ). As the pro-
ess of perceiving, synthesizing, and inferring information by machines
 Nilsson, 2009 ), AI may substantially empower CAS science to address
ustainability challenges as noted below. In particular, we highlight the
sefulness of machine learning, a branch of AI, which focuses on devel-
ping, understanding, and using methods that leverage data to improve
he performance on some set of tasks. 

The first challenge is a need to address the high dimensionality and
omplexity of SES that sustainability science examines. Such systems are
ighly complex given the dimensions of factors and relationships com-
rising them ( Clark and Harley, 2020 ; Kates, 2011 ; Kates et al., 2001 ).
ollowing Clark and Harley (2020) , the generic SES of sustainability sci-
nce includes the interactions of institutions (governance), actors, and
esources (biophysical world at large) regarding consumption and pro-
uction goals. These elements maintain high heterogeneity at the lower
micro or local) and focal ( meso ) spatial levels, although persistent or
acro-level factors, such as climate zones or political boundaries, influ-

nce the interactions. These interactions may vary over time, affected
y past conditions and leading to different outcomes, some of which
ay be emergent patterns, especially surprises that may come from un-

nown factors or causal relationships ( Scheffer et al., 2012 ). Despite
his complexity, SES are, for practical reasons, often examined by fo-
using on specific systems at local scales, and on lower levels of system
rganization. This way of handling complexity tends to draw attention
o place-based or context specific outcomes, from which SES-specific
trategies for achieving certain sustainability goals are derived. It is un-
erstood, however, that the overall internal organization of SES is based
n more general and overarching principles ( Clark and Harley, 2020 ;
ates et al., 2001 ). Focusing on the lower levels and local scales limits

nsights into general dynamics and principles that could enhance under-
tanding and broader strategies. Given the high dimensionality and com-
lexity of sustainability challenges, “silo approaches ” ( Grimm, 2023 ;
iu et al., 2018 ) alone may solve one problem while exacerbating oth-
rs, or relieve the problem in one dimension or moment but worsen it in
thers. 

Hence, and second, there comes the need for integrative approaches.
everal frameworks for this integration have been proposed or advanced
ithin sustainability science, foremost cast for specific problem sets

ommon to sustainability ( Ostrom, 2009 ; Turner, et al., 2020 ) such as
uman-nature nexus and telecoupling (e.g., Kapsar et al., 2019 ). At the
ame time, sets of metrics capturing the dimensionalities involved have
een proposed, such as inclusive wealth —the “… aggregate value of all
apital assets [including ecosystem services], where the value of a unit
f a capital asset is measured by the contribution it makes to increasing
urrent and future human well-being ” ( Polasky et al., 2015 , p. 446). In
ne of the broadest framing, Clark and Harley (2020) propose that the
patial dynamics of human-environmental interactions at the mesoscale
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Fig. 1. Publications addressing sustainability science (# of publications un- 
der the search for the sustainability science topic; left Y -axis) vs. those using 
ABMs (# of publications under the search for both sustainability science AND 

ABM topic; right Y -axis) to address sustainability problems since 2000 (S. Sci- 
ence = sustainability science; for data search detail, see the endnote). 

2

 

C  

u  

g  

m  

o  

a  

A  

W  

s  

a

3

c

3

 

l  

(  

h  

a  

s  

o  

t  

j  

2  

a  

p  

r  

t  

a  

g

an act as a bridge, integrating the heterogeneity of lower-level dynam-
cs with the more stable, macro-scale patterns and processes within the
ES. 

Third, choosing among alternative theories or mechanisms to ex-
lain or project human decision-making or actions is a serious challenge
 An et al., 2023 ; Wijermans et al., 2023 ). For example, alternative theo-
ies of resource uses may yield highly divergent outcomes at the system
evel, with none outperforming the others in terms of robustness and va-
idity ( Janssen and Baggio, 2017 ). It is increasingly acknowledged that
o single model of decision making will be able to cover all possible
ontexts, hence frameworks exist that help to find the most suitable de-
ision model for a given context ( Wijermans et al., 2023 ). Still, even for
 given context, seemingly minor details of how a theory is implemented
an have large effects on the system-level outcomes ( Muelder and Fila-
ova, 2018 ). 

Fourth and last, sustainability research and applications must en-
ble and evaluate processes and temporal progression ( Clark and
arley, 2020 ). This temporal dimension, including depicting and pre-
icting pathways of development affected by hysteresis and legacies ef-
ects (i.e., lag-times between cause and effect and past outcomes con-
training future ones, respectively) as well as future tipping points and
daptations in human-environmental conditions ( Bürgi et al., 2017 ), be-
omes a must. 

.2. Underrepresentation of CAS/ABM in sustainability science 

CAS and ABM have been increasingly used to handle sustain-
bility problems in human-environmental arenas, particularly in land
se/change analysis, human-wildlife interaction, and agricultural sys-
ems ( An et al., 2020a ; Brown and Robinson, 2006 ; Müller et al., 2007 ;
obinson et al., 2007 ). We can see such popularity also from a set
f review papers ( An, 2012 ; An et al., 2021 , 2023 ; Elsawah et al.,
020 ; Parker et al., 2003 ; Rounsevell et al., 2012 ; Schlüter et al.,
012 ). However, we believe CAS and ABM are still quite underrep-
esented in sustainability science literature. As pointed out in a re-
iew paper ( Ioan et al., 2021 ), a search on the Web of Science
nder the key “TS = (( “sustainability ” OR “sustainable development ”)
ND ( “agent-based modeling ” OR “agent-based simulation ”)) AND
anguage = ”English ” returned 170 publications from January 2005 to
uly 2019. In comparison, a search also on the Web of Science for “sus-
ainability ” OR “sustainable development ” (as topic) for 2018 alone
eturned 27,608 publications (also in English). Out of the above total
umber (170), the authors kept 87 publications that were meaningful
 Ioan et al., 2021 ). Among the 87 publications, the top three domains
ere agriculture (24), transportation (13), and energy (10). This under-

epresentation of CAS and ABM in sustainability science may arise from
he relative unfamiliarity with CAS science and its ABM methodology
 An et al., 2017 , 2021 ). 

The underrepresentation of CAS and ABM in sustainability science
s also supported by our own literature search (See the endnote 1 ). For
xample, CAS applied to addressing sustainability problems have signif-
cantly increased of late, but they comprised only about 1.24 % of all
ustainability science publications as late as 2021 ( Fig. 1 ). In addition,
mong the 22 generic sustainability science cases examined here, only
5 of them could benefit from using ABMs but failed to do so (Table S1
n Supplemental file C). 
1 We used a combination of (sustainability science) OR (sustainability) OR 
sustainable development) for searches under “Topic ” in Web of Knowledge. 
or the agent-based modeling related search, we use (agent-based model∗ ) 
R (agent-based model∗ ) OR (individual-based model∗ ) OR (individual based 
odel∗ ) also under Topic. The two searches are connected with an AND oper- 

tor. The Queries were sent on 31 December 2021 to retrieve the entire set of 
apers from 2000 to December 31, 2021. 
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.3. Problem statement 

The literature reviewed above suggests that advances in linking
AS/ABM with sustainability science problems at large could improve
nderstanding of sustainability problems and, perhaps, promote syner-
ies between the two research communities. Focusing on the improve-
ent goal, we identify the basic concepts in CAS and its major methodol-

gy of ABM, illustrate the usefulness of CAS/ABM in addressing sustain-
bility science challenges, and point out a new opportunity arising from
I to address sustainability problems, while also advancing CAS/ABM.
e envision that CAS and sustainability sciences can be integrated, with

trong possibilities of leading to breakthroughs in understanding and for
pplication of sustainability problems. 

. Contribution of CAS science to addressing sustainability 

hallenges 

.1. Handling the high dimensionality and complexity challenges 

Dating back to open systems in the mid-20th century ( Von Berta-
anffy, 1950 ) and explicit studies of complexity in the 1970s
 Vemuri, 1978 ) and arguably in late 1940s ( Weaver, 1948 ), CAS science
as advanced to a comprehensive, complex systems framework that can
ddress the high dimensionality and complexity problems addressed in
ustainability science. Compared to Complex Systems ( Holland, 1992 )
r Agent Societies ( Conte and Paolucci, 2014 ) to which CAS are similar,
he latter emphasizes the pivotal role of individual agents or entities (ob-
ects) that make choices, commonly to pursue a certain goal ( Abar et al.,
017 ). Agents in CAS interact with one another ( Fig. 2 , dashed arrows)
nd the environment. Agents can possess different degrees of autonomy,
roactivity, and intellectual capabilities, such as memory, knowledge,
easoning, learning, social capital, and adaptative capacity. Computa-
ionally, agents are represented as software abstractions that bundle
 particular set of attributes (or traits) and methods (or actions). Al-
orithmically, agents follow rules ranging from very simple “if-then ”
reactive decision) rules to sophisticated ones based on evaluating the
uture consequences of alternative decisions ( Rounsevell et al., 2012 ).
his representation builds on a unique ontology ( Fig. 2 ) in which real-
orld agents are represented as heterogeneous individuals that gener-
te the interactions in question ( An, 2012 ; Brown and Robinson, 2006 ).
his ontology of methodological individualism represents a shift from
nderstanding aggregate agent features and/or relationships to the in-
ividuals and micro-level processes that constitute and explain the ag-
regate features (detail in Supplemental file B). At the same time, we
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Fig. 2. Ontology of complex adaptive systems (CAS). Circles and ovals represent agents and the environment, respectively, while arrows of different colors and 
shapes represent heterogeneous interactions or influences between various CAS elements. The numbers and letters represent interactions among agents and those 
among CAS, respectively. 
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how that non-traditional data can help unfold dynamic patterns (detail
n Supplemental file D). 

Given the features in this ontology ( Fig. 2 ), CAS science offers a com-
rehensive, complex systems framework applicable for the problem sets,
nteractions, and outcomes addressed in sustainability science. This ap-
licability is illustrated by way of a literature survey of empirical studies
n both CAS and sustainability sciences (Supplemental file C). The qual-
ties of the CAS framework that can guide sustainability scientists and
ractitioners follow. 

First, SES in sustainability problems can be examined in a hierar-
hical structure, where actors (i.e., CAS agents) at one level or location
ay affect and be affected by actors at other levels or locations. The sus-

ainability literature is replete with cross-scale (lower to upper levels)
nteractions (detail in Supplemental file C). For example, individual mi-
rants (lower-level actors) affect their households (focal or meso ‑level
ctors) through remittances ( Dou et al., 2017 ; Mena et al., 2011 ); or
astepaper markets (upper-level actors) affect decisions of their suppli-

rs and recyclers (focal-level actors) ( Sauvageau and Frayret, 2015 ). 2 

lso, An et al. (2020a) show that individual monkeys and monkey
roups may jointly affect their movement and habitat use patterns (Sup-
lemental file E) 

Second, CAS can be employed to track the behavior of autonomous,
eterogeneous, and decision-making agents that SES entertain. For in-
tance, it can track the movement of prey and predator animals and
unters in realistic simulations, accounting for encounters, hunts, or
redates on the heterogenous landscape at certain times. The resulting
imulation gives rise to meaningful results when alternative behavioral
odels are applied to ABM, testing the reliability of various theories of

ocial behavior of hunter–gatherers (Supplemental file F). 
Third, sustainability problems commonly involve assessment of tem-

oral dynamics. Environmental conditions at earlier times, for exam-
le, may constrain those at the current time, which may in turn further
onstrain those at future times. A plethora of SES case studies, for in-
tance, examine the impacts of historic precipitation, disasters, fires, lo-
al weather conditions, and land use on the current environment (Table
2 More examples are available in Table S2, Supplemental file C and Supple- 
ental file E, where individual monkey and monkey group agents affect each 

ther across focal- and upper-levels. 

 

 

T

4

2 in Supplemental file C). Similarly, adjacent or distant environments
ay affect and be affected by the immediate environment in question

t the same level through various mechanisms, such as the telecoupling
ffect ( Dou et al., 2020 ) (Table S2 in Supplemental file C). CAS has the
apacity to account for these dynamics in models. 

Fourth, decisions or actions of actors at one time or location may
nfluence their own and other actors’ decisions or actions, which may
ranslate to system-level events or emerging outcomes at later times or
ther locations. Abundant SES examples exist regarding how agents af-
ect one another through crop choice, land abandonment, social norm
hanges, coastal defensive buildings, trading of goods, and other inter-
ctions in SES (see Table S2 in Supplemental file C). 

Fifth, at the system level, attention is paid to the mutual influences
etween SES across different levels, between parallel SES, or among
ifferent times. For instance, to project future human migrations and
hanges in the environment, the interactions between parallel SES in
he future can be assessed by the exchange of information of migration
estinations within a social network, which can be viewed as intercon-
ection between the local system of migration origin and outside sys-
ems of migration destinations ( Kniveton et al., 2011 ). 3 

Finally —as a result of the above points —the CAS ontology provides
 framework that captures the essence of many other SES processes and
ynamics, such as adaptive decision-making and the co-evolutionary as-
ect of SES. It guides sustainability interests in the formulation of goals,
ata collection, and analysis and modeling. 

.2. Providing an effective platform for systems integration 

The modeling advances of CAS science point to its potential in ad-
ressing the aforementioned high dimensionality, complexity, and other
roblems of SES and sustainability given the following considerations: 

• Agents: what agents (or actors; Supplemental file A), attributes
and/or traits, and behaviors of the agents should be included at each
level of the corresponding CAS or SES? 

• Environment: what attributes and processes should be included (es-
pecially those affected by and feed back to affect agents) at each
3 More examples about system-level SES/CAS interactions are presented in 
able S2 (under various CAS-CAS interaction subcategories). 
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level? In CAS, the environment can be broadly defined to be the
context other than the agent under consideration, such as the space
(land) and/or other agents. 

• Agent-agent and agent-environment interactions: what relationships
(expressed as rules, influences, or actions) among or between agents
and the environment govern system dynamics at each level? What
cross-level (e.g., from upper- to focal level) relationships are needed
to account for systems dynamics and complexity? 

• Systems-level complexity (e.g., emergence): what emerging pat-
terns may arise from the interactions? Such patterns, often not the
sum of the system’s parts, cannot be analytically solved by ex-
amination of the system’s parts alone. 4 This complexity includes
surprises, path dependence, nonlinearity, self-organization, contin-
gency, emergence, multifinality, and equifinality (for definitions see
Liu et al. (2007a) and An (2022) . 

Sustainability science examines human-environment relationships in
hich actors/agents are people or various organizations of them and

he environment is the biophysical world as modified-to-transformed
y human action. It seeks to understand the interactions within and
etween the two subsystems. It is also open to applications of vari-
us methods and models, especially those that can handle integration
mong the components of SES ( Turner et al., 2020 ). CAS science, in
ontrast, examines any kind of relationships, agents, and subsystem in-
eractions (e.g., bacteria and their hosts) and has heavily leveraged the
se of ABMs, although cellular automata ( Taleb et al., 2004 ), partial
ifferential equations ( Chaplain and Anderson, 2004 ; Hornberg et al.,
006 ; Lindsay et al., 2020 ), cell-based stochastic modeling ( Roeder and
oeffler, 2002 ), and structural equation modeling ( Folmer et al., 2012 )
re not uncommon (see Table S2). Regardless of the range of agents
ntertained, CAS science provides a platform for systems integration
pplicable for sustainability science topics, including integration of
ata, information, and knowledge gained from case studies, stylized
acts, role-playing games, and laboratory experiments (e.g., the four
mpirical approaches for social science research by Jansen and Ostrom
 Janssen and Ostrom, 2006 )). Significantly, agent-based modeling, as a
rime CAS method and tool (e.g., credited to do “a new kind of science ”
 Wolfram, 2002 )), provides a way to fuse the deductive-mechanistic and
he inductive-empirical approaches that pervade different pathways to-
ard understanding and envisioning CAS. 5 

Perhaps the most advantageous feature of ABM is its capacity to
rovide a platform and tool for systems integration, a major goal of
ustainability science ( Liu et al., 2015 ; Rounsevell et al., 2012 ). Mim-
cking the realistic (though tailored and simplified) structure and pro-
esses of the system under investigation ( Fig. 2 ), ABM seeks to trans-
ate real-world actors, environment (e.g., forestland), and constraints
e.g., land use regulations; Fig. 2 ) into virtual agents, virtual envi-
onment (e.g., land pixels), and computerized rules (e.g., if A then
 else C), offering opportunities for integrating heterogenous data,
nowledge, models/methods that cross spatial, temporal, and orga-
izational scales, disciplines, and borders (e.g., political) ( An et al.,
005 ; Parker and Robinson, 2017 ) (see Supplemental file E). ABMs are
owerful when modeling learning and adapting processes ( An, 2012 ;
umming, 2008 ; Milner-Gulland, 2012 ), accounting for heterogene-

ty, bounded rationality and incomplete knowledge/information, and
onlinearities ( An et al., 2020b ; National Research Council, 2014 ;
4 In CAS science, common processes leading to emerging patterns are distilled 
nd generalized from specific case studies or experiments, paving the way to 
evelop, test, and refine falsifiable, generative theories that reproduce observed 
ystem dynamics ( Epstein, 2014 ). 
5 Axelrod (1997) calls CAS type simulations a third way of doing science in 

ontrast to inductive and deductive approaches, the two primary ways of do- 
ng science. Accounting for abductive approaches ( Flach and Kakas, 2014 ) or 
lausible outcomes confined to particular observations, common in the social 
ciences, perhaps CAS science might be seen as a “fourth ” way of doing science. 
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ounsevell et al., 2012 ), and exploring many complexity features such as
ath-dependence, abrupt changes, and critical thresholds, among others
 An, 2022 ). 

ABMs have been widely developed and used in CAS stud-
es to address problems confronting social, environmental, and
ocial-environmental systems since the 1990s ( An et al., 2021 ;
incenot, 2018 ). These endeavors have generated a rich legacy of ABM
ethodology, such as the Overview, Design concepts, Details (ODD)
rotocol and variants for model documentation ( Grimm et al., 2020 ;
üller et al., 2013 ) and the Pattern-oriented Modeling (POM) approach

 Grimm et al., 2005 ) for model validation. At the same time, ABM en-
eavors have enriched the literature in sustainability science in terms
f modeling human behavior ( An, 2012 ; Janssen and Baggio, 2017 ):
or example, the frameworks for Belief-Desire-Intentions and physical,
motional, cognitive, and social factors ( Conte and Paolucci, 2014 ;
chmidt, 2002 ); exploring how adaptive behavior, abrupt changes,
rises or disasters, and critical transitions may generate surprising pat-
erns in the corresponding SES ( An et al., 2014 ; Liu et al., 2007a ;
ational Research Council, 2014 ); life cycle assessment ( Davis et al.,
009 ; Marvuglia et al., 2018 ); and modeling emergent macro-level out-
omes and pathways under various policies or interventions ( An et al.,
005 ; DeAngelis and Grimm, 2014 ; Gimblett, 2002 ; National Research
ouncil, 2014 ) . 

A 2006 special issue of Ecology and Society ( Janssen and Os-
rom, 2006 ) constitutes a milestone in the sustainability science and
BM nexus, providing various empirical methods by which ABMs were
mpirically tested for SES. Aside from a variety of challenges in devel-
ping and employing ABMs such as sharp learning curve, high data
emand, programming difficulties ( An, 2012 ; An et al., 2021 , 2020b ;
chulze et al., 2017 ), the relative unfamiliarity of CAS science and
BMs in the sustainability science community ( Section 2.2 ) highlights

he timeliness and importance of this article. 

.3. Handling alternative pathways or theories in sustainability 

CAS science has been wrestling with equi/multifinality (or final-
ty) issues, which also abound in sustainability science. Equifinality —a
acro-level pattern can be generated through different pathways from
icro-level processes ( von Bertalanffy, 1968 ) —makes the search for
echanistic explanations challenging. In CAS science, for instance, co-

peration or betrayal in the Prisoner’s Dilemma can emerge from tit-for-
at retaliation ( Axelrod, 1997 ), strong reciprocity ( Boyd et al., 2003 ),
nd group selection ( Di Tosto et al., 2007 ), among other strategies
 Conte and Paolucci, 2014 ). As a double-edged sword, equifinality may
ffer more explanatory pathways, but also question the validity of ex-
lanations because different theories can reproduce very similar or even
he same macro-patterns. In contrast, multifinality —the same causes
nd/or starting conditions lead to very different outcomes —also poses
hallenges to our understanding for mechanistic approaches ( An et al.,
021 ). For other issues related to CAS/ABM model verification and val-
dation, we refer to An et al. (2021) . 

The POM approach ( Grimm et al., 2005 ; Grimm and Rails-
ack, 2012 ), overlapping with Approximate Bayesian Computing
 Hartig et al., 2011 ) in CAS, offers a possible means to address the final-
ty issues. It is based on the multi-criteria design, selection, and calibra-
ion of models by requiring that models can simultaneously reproduce
n entire set of patterns characterizing an CAS. Often a set of broad,
eneral patterns can more effectively reduce finality issues than trying
o force a model to reproduce a single pattern, such as a time series
f a single variable. Given the synergy between CAS and sustainability
ciences hitherto discussed, we posit that despite the paucity of appli-
ation in sustainability science, POM may prove useful to uncovering
any sustainability related mechanisms, such as testing theories of cer-

ain foraging behaviors using ABM (Supplemental file F). 
Given the reflexivity of human agents, the social sciences tend to

pproach the dynamics of the social subsystem in multiple, probabilis-
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ic ways, commonly applying both quantitative and qualitative meth-
ds. Empirical models use evidence to explore outcomes and plausible,
nductively derived explanations ( Robinson et al., 2007 ). These “top-
own ” models reproduce macro-level patterns that lend themselves to
xplanatory interpretations. For example, empirical models can accu-
ately reproduce flight patterns of birds, even emergent ones, in the
bsence of theory explaining the patterns (but offering insights about
he outcome to be explored). Mechanistic or “bottom-up ” models, com-
on in the biophysical sciences and some parts of the social science

e.g., economics), rely on theory-based deductive approaches. CAS sci-
nce supports both approaches because its ontology explicitly represents
he behavior of agents, for which theory exists and can be tested, while
lso providing environmental responses to that behavior and agents’ re-
ponses to the changes in the environment ( Fig. 2 ). This mechanistic and
mpirical blend opens opportunities to identify and explore integrated
uman-environment theory ( Turner et al., 2020 ). CAS science has em-
owered computational social science, allowing researchers to explore
ocial phenomena and test hypotheses by virtue of computer-based sim-
lations of agents and their interactions ( Bankes et al., 2002 ), nurturing
 generative social science in which the dynamics are “grown ” in the
ssessment stages ( Epstein, 1999 ). 

.4. Enabling and evaluating processes and temporal progression 

Revealing the temporal progression in a variable of interest (e.g.,
mount and spatial distribution of a certain resource or wildlife habitat)
s important as projected patterns, if reliable, providing insights about
he system’s sustainability. For instance, dynamic habitat maps (e.g.,
ig. S2, Supplemental file E) may inform the effectiveness of conser-
ation policies. A “byproduct ” of such temporal progression informa-
ion is its usefulness for model evaluation. Many investigations evaluate
odels (mostly statistical models) based on their goodness of fit or the
aximum likelihood. Modelers strike a balance between fitting the data

e.g., by adding more parameters or equations) and keeping the explana-
ion as simple as possible ( Rich, 1995 ), reflecting the long-time trade-
ff between generalizability and context ( Janssen and Ostrom, 2006 ).
valuation of CAS models, however, does not depend extensively on
tatistical performance. Rather, the CAS may provide insights into the
iability of the mechanistic (e.g., cognitive, institutional, and/or social)
rocesses accounting for CAS dynamics. In this case, the CAS informs us
f the processes are justifiable or not —whether the system bears self-
rganization, becomes dissipative, or shows self-organized criticality
 Manson, 2001 ). 

CAS science assists in assessing outcomes, which represent states of
gents and the environment at a certain level or temporal stage, and
valuate processes and temporal progression ( Liu et al., 2015 ), asking
hether the direction, magnitude, and significance of certain parame-

ers are supported by existing theories. In essence, all the elements and
rrows in Fig. 2 and Table S2 in Supplemental file C can be check points
or SES documentation, assessment, or model evaluation. 

As a “new kind of science ”, CAS science can leverage the patterns
r trajectories ( “data ”) generated by ABM simulations, assessing the
xtent to which such “data ” align qualitatively and quantitively with
mpirical observations or theoretical frameworks. For instance, sustain-
bility researchers may consider whether the univariate and bivariate
tatistics or regression coefficients based on such “data ” are reason-
ble and supported by existing theory. Furthermore, the POM approach
an escalate our confidence about our understanding of the CAS and
ts behaviors. Finally, the CAS ontology ( Fig. 2 ) facilitates the devel-
pment of new tools, platforms, or models, a high-priority research
rea in sustainability research ( Liu et al., 2015 ). For instance, An and
olleagues ( An et al., 2020a ) followed this ontology and developed a
odel to explain space-time dynamics among monkey behavior, habi-

at degradation, human resource collection activities, and nature re-
erve management policies in a Chinese nature reserve (Supplemental
le E). 
6

. Leveraging AI to better understand SES 

The four advantages identified for adopting CAS science and ABMs
re built on prior knowledge about 1) the structure and scales , often hi-
rarchical, at which agents are located, identified, and connected to
ne another and/or to the environment ( Fig. 2 ), and 2) the causal re-

ationships among the agents, the environment, and their behavior. Such
nowledge is important in causal reasoning ( Schlüter et al., 2023b ). Yet
rom time to time, inadequacy of such knowledge exists, posing a prob-
em for CAS modelers and sustainability scientists. AI, particularly its
ubfield of machine learning, can substantially empower CAS to ad-
ress this problem ( Cartwright, 2019 ; CSLI, 2020 ). The links between
I and CAS as well as their obvious implications for sustainability prob-

ems (e.g., elements in Fig. 2 ) warrant brief discussion, focusing on the
enefits to detect mechanism(s) behind CAS and/or SES subject to sus-
ainability challenges. 

Through a process of data-based “training ”, machine learning can
elp derive CAS (or SES, the CAS equivalent in sustainability science)
tructures or processes ( Section 4.1 ), or verify or rebut some hypothet-
cal causal relationships or processes behind observed macro-patterns
n the relevant CAS ( Section 4.2 ). Many machine-learning methods al-
ow for the training of complex models based on some high dimensional
atasets. Such machine learning methods may range from the relatively
asic linear models (e.g., standard linear regression) to more advanced
odels that can capture non-linear behavior (e.g., neural networks, es-
ecially deep learning). On the other hand, machine learning can be
sed to detect patterns in model output, which may help to evaluate the
obustness of the model. 

.1. Use of AI to unveil system structure and scale(s) 

Dealing with spatial, temporal, and organizational scales, including
elated scaling issues, remains a “grand challenge ” for CAS modelers,
equiring clear representation and matching of scales in relevant sub-
ystems or individuals, variables, and processes ( Elsawah et al., 2020 ).
ust as in the Coleman’s bathtub or boat framework ( Coleman, 1990 ), a
AS modeler needs to know some “social facts ” (e.g., institutions, social
orms), a macro-level context corresponding to upper-level CAS ( Fig. 2 ),
hich can regulate or affect the conditions or boundaries of individual
ctions, corresponding to focal CAS agents ( Fig. 2 ). Such conditions or
oundaries, once formed or changed, will lead to heterogeneous indi-
idual actions, which may finally form and reshape the starting macro-
evel context. Yet knowledge about the structure and this kind of macro-
icro-macro interactions between agents and the environment may be
 luxury in many instances. What if CAS modelers only possess data at
pecified spatial (e.g., focal and/or upper CAS), temporal (e.g., historic
r current CAS), or organizational scale(s)? 

Our answer is that AI, among many other alternative approaches, can
elp unveil —at least offer hints about —such structure, interactions, and
cales. Advances in data science have yielded a wide variety of scientific
ethods, programming tools, and appropriate data infrastructures, fa-

ilitating analysis of new forms of data (including bigdata) in a scalable,
fficient, and robust fashion. This advantage boosts AI’s power to under-
tand human intelligence and simulate how agents perceive, act, and re-
ct to other agents and/or changes in the environment(s) around them
 Gil and Selman, 2019 ). One prominent aspect of AI features neural net-
orks, which are comprised of nodes in different layers and their links to
ne another mimicking human and animal brain structures. Nodes can
e understood as agents in CAS or actors in SES, while links are agent-
gent or agent-environment relationships in CAS or SES ( Cranmer et al.,
020 ; Kipf and Welling, 2016 ), which can be referred to the actors and
rrows in Fig. 2 . 

Once sufficient data are provided and an appropriate model structure
s chosen, the trained models, often with high predictive power, help to
alibrate and/or validate CAS structure or processes better. Each agent
r actor can be assigned with its own unique regression equation or
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Fig. 3. Derivation of the Newtonian law of gravitational force. The process is based on data on particles (represented as circles of different colors) over time using 
a machine learning approach ( Cranmer et al., 2020 ). F , G , m1 , m2 , and r represent the force between Particles 1 and 2, gravitational constant, the mass of Particle 1, 
the mass of Particle 2, and the distance between the two particles. The double arrows represent forces between particles. GNN represents graph neural network. 
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eural network links ( Zhang et al., 2016 ). Understanding and envision-
ng agent behavior or mechanistic processes becomes a process of opti-
izing the neural networks for the agents. 6 Recently, machine learning
as advanced dramatically, helping to uncover mechanistic processes.
n a successful instance ( Cranmer et al., 2020 ), a graph neural network
odel has been trained to derive the closed-form, symbolic expression

f Newton’s law of motion based on experimental data The Newton’s law
f motion can be derived through machine learning based on the mass,
harge, geographic positioning information, and other information of all
articles (corresponding to agents in Fig. 3 ) in the experiments. In other
ords, the machine learning approach ultimately produced a learned
athematical function that precisely replicates Newton’s formula: 

 = 𝐺
𝑚1 𝑚2 
𝑟2 

(1)

here F, G, m1 , m2 , and r represent the force between Particles 1 and
, the gravitational constant, the mass of Particle 1, the mass of Particle
, and the distance between the two particles, respectively. Nothing is
equired as to prior knowledge regarding its form ( Fig. 3 ). This example
uggests AI’s major potential to uncover laws or mechanisms in other
omains, nourishing an AI-informed CAS and sustainability sciences.
xpanding from the above example, A, B, C, D, and so on could be users
agents) of a “commons ” resource (e.g., water resource), and arrows
epresent the power, interactions, and governance rules of these users
n a certain SES. If we know some data of these agents (users) and the
nvironment (e.g., the amount of renewable water, and the uses of the
ater), we are likely to derive the possible rules or mechanisms that are
idden but generate such data. 

.2. Use of AI to understand causality 

One barrier that besets both sustainability and CAS sciences is the dif-
culty of detecting the most reasonable mechanism(s) behind the data or
atterns observed, and particularly, identifying a set of justifiable rules
pplied to them ( An, 2012 ; An et al., 2021 ; Cumming, 2008 ). The causal
elationships behind the patterns or data can vary across studies and ap-
roaches ( Schlüter et al., 2023b ). Various AI methods, which contribute
o better integrating “empirical analyses and process- or agent-based
odeling ”, will enhance sustainability modelers’ capacity to unravel

complex causal processes that affect sustainability ” ( Schlüter et al.,
023a ). Below we use an example to show how AI can help detect causal
elationships. 

How will Mikania ( Mikania micrantha )), an invasive vine species
hat may smoother and kill canopy trees, affect the habitat use of
6 Models trained in this way are not many, and one reason might be the diffi- 
ulty of training neural networks for so many agents. Another challenge hinges 
n the difficulty of interpretation: such “trained ” models provide little or no 
nderstanding of the mechanisms governing the processes, like a “black box ”. 
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eer in Chitwan National Park and its buffer zone ( Bhatta et al., 2021 ;
hrestha, 2016 )? The literature is unclear on whether plant invasions are
 consequence of deer browsing or occur independent of deer browsing
 Blossey and Gorchov, 2017 ). Observational evidence for ungulate her-
ivory, however, indicates that browsing is a strong facilitator of exotic
lant invasion. Suppose Mikania data, including GPS collar data of deer,
xist over time. How can we derive deer behavioral rules with reference
o Mikania? 

Reinforcement learning (RL, an artificial intelligence algorithm)
ethod, is used to figure out animal “decision ” rules ( Fig. 3 ; An et al.,
023 ), despite zero pre-knowledge regarding the causal relationship (or
ndependence) between deer herbivory and Mikania invasion. Teleme-
ry data (Panel A, Fig. 4 ) will be used as input to train the RL neural
etwork (Panel B); the RL neural network, once trained, can then learn
nd establish a set of nodes and links, which can maximize a reward
unction with compliance to the state (largely data; Panel B). However,
he established nodes and links are hidden. How can the modeler know
hese nodes and links? A regression tree (Panel C) can be leveraged,
hich translates the findings into a set of visible decision tree links (ar-

ows in Panel C) and nodes (e.g., C1, C2, C3, d1, d2, d3 in Panel C). In
urn, these nodes and links, with the aid of some fundamental domain
nowledge, can be used and interpreted as meaningful and understand-
ble mechanisms (Panel D). The node “if Mikania < 15 % ” (within the
lue box in Panel D) comes from the multiple nodes and links in the blue
rea of Panel C (modified from Fig. 2 in An et al. (2023) ). Knowledge
btained this way, e.g., those “if…then…else if…then ” statements that
re translated from the hidden nodes and links, will likely represent the
ecision rules that deer use when roaming on the landscape. 

.3. Use of AI to process and use qualitative data 

As pointed out by Clark and Harley (2020) , “actors’ behavior and
ecisions, especially with respect to choices about the future, are mo-
ivated less by accurate anticipations of the future than by collectively
eld narratives ”. Leveraging text narratives in whatever media in CAS /
ustainability models can increase their potential to inform agent behav-
ors and/or verify outcomes in CAS ( Chattoe-Brown, 2020 ) or trajecto-
ies related to sustainability. In Supplemental file D, if some “sadness ”
ata can be collected from related tweets, ABM’s rules or predictions
an be better verified or falsified about disaster or rescue dynamics. For
hallenges and weaknesses in ABM verification and validation, we refer
o ( An, 2012 ; An et al., 2021 ; Manson, 2002 ; Wilensky and Rand, 2007 ;
hang and Robinson, 2021 ). 

Recent advances in natural language processing and mining quali-
ative data (e.g., ethnography input, social media texts, and other tex-
ual sources) have shown promise to reveal the underlying reasons or
xplanations for a human agent’s behavior, or their stance towards a
ebatable issue or policy. Owing to rapid advances and the success-
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Fig. 4. Use of AI (reinforcement learning in particular) to decipher deer-environment relationships based on agent and environmental data (adapted from Fig. 2 of 
An et al. (2023) ). 

Table 1 

Overview of the elements in the supplemental file to this article. 

Element Purpose and content Page # 

∗ 

A. The three essential elements in 
social-environmental systems 

Introduction of the three common elements in social-environmental systems: actors, environment, and outcomes, their 
relationships, and exemplar references 

1 

B. The representation and 
ontology of complex adaptive 
systems 

The ontology of agents and environment that is represented as a hierarchical CAS structure ( Fig. 2 of main text) with 
time progression; the consistency between the ontology and sustainability science’s dimensions 

1–2 

C. Literature search and review The way, including search keyword and time frame, under which all the case studies in the realms of complex 
adaptive systems (CAS) science and sustainability science (SS) are selected (all cases shown in Tables S1 and S2 in 
Supplemental file C) 

2–4 

D. Use of non-traditional data to 
unfold dynamic patterns 

An example of social-sensing analysis, which shows how Twitter (X) data can be used to unfold the dynamic patterns 
of emotions (e.g., anger, disgust, fear, joy, sadness, and surprise) in different topics related to a hurricane 

4 

E. ABM for Systems integration, 
scenario test, and space-time 
trajectories 

An exemplar ABM that shows how human resource extraction and migration activities, affected by conservation 
payments, may interact with the Guizhou golden monkey ( Rhinopithecus brelichi ) habitat use in a Chinese Nature 
Reserve ( An et al., 2020a ) 

4–5 

F. Foraging behavior model for 
theory testing using ABM 

Another exemple of an ABM investigates hunting outcomes under different conditions in the Mbaracayu Forest 
Reserve of Paraguay, including hunting strategies, group sizes, and mobility patterns ( Janssen and Hill, 2016 ) 

5–6 

∗ Page numbers refer to those in the Supplemental materials. 
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ul application of deep neural networks in natural language process-
ng ( Bahdanau et al., 2015 ) and software engineering ( Nguyen et al.,
018 ), it is now possible to accurately and effectively translate English
ext (e.g., in social media) —through developing an interactive deep
earning-based system —into a list of relevant and sequential Applica-
ion Programming Interfaces, which can be used to derive ABM rules or
erify ABM predictions as noted in Supplemental file D. Table 1 below
hows the major elements in the Supplemental file, which is uploaded
s a supplement document. 

. Concluding remarks 

Humanity is facing a range of unprecedented sustainability chal-
enges. Sustainability science addresses these challenges through exam-
nations that integrate by examining the integration of human and bio-
hysical subsystems that give rise to them. It blends mechanistic and em-
irical modeling approaches to understand the dynamics of the social-
nvironmental systems. CAS science affords significant opportunities in
hese efforts, as demonstrated by those engaged in CAS and ABM re-
earch to date ( Anderies et al., 2019 ; Elsawah et al., 2020 ; Schlüter et al.,
8

023a ). It offers sustainability researchers a unique perspective and the
elated tools to consider relevant agents, environment, and their inter-
ctions across hierarchical levels, various locations, or times. 

While not the first assessment of the power of CAS and ABM to con-
ribute to sustainability science (e.g., Elsawah et al., 2020 ; Lindsay et al.,
020 ; Schlüter et al., 2023a ), three aspects of the possible synergy are
dentified here. First, CAS science’s attention to mechanistic processes
ould substantially benefit sustainability science. For instance, the POM
pproach may help address many finality-challenges embedded in sus-
ainability science. Second, the ABM approach offers a powerful tool for
ystems integration, for use of cross-scale and cross-disciplinary data
nd models, for model evaluation, and for providing an ontology and
tructure to examine SES sustainability challenges. Third and last, these
ositives are likely to be enhanced by AI of the digital revolution (with
nput from data science), providing the potential to advance understand-
ng of the social-environment systems and posit the means to make them
ore sustainable. 

This paper focuses on how CAS and ABM may contribute to sustain-
bility science beyond their current uses. In addition, our take on these
otential uses is influenced by our research interests, which include CAS
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nd ABM for sustainability themes (human-environmental science more
roadly), land system science, landscape ecology, and geography as well
s our shared methods residing in mainstream science. Other sustain-
bility researchers engaged in this science or following different topical
nterests and explanatory perspectives may have different views than
hose expressed here. 

Our focus does not negate or downplay the benefits that sustainabil-
ty researchers may contribute to CAS and ABM. The challenges existing
n sustainability science (see Section 2.1 ), such as those identified by
lark and Harley (2020) , potentially serve as opportunities for CAS and
BM. For instance, the progress made on governance and institutions of
nvironmental resources, “deep ” causes of land-use change, or biophys-
cal feedbacks on community justice will surely help CAS researchers
o comprehend and interpret emergent, even surprising, patterns that
rise among agents in different human-environmental conditions. While
onsideration of this sustainability-to-CAS/ABM orientation lies beyond
he scope of this article, it warrants attention, and has the potential to
trengthen connections among various sustainability research commu-
ities. 
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