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Abstract

Habitat distribution models have a long history in ecological research. With the development of geospatial information technology, including
remote sensing, these models are now applied to an ever-increasing number of species, particularly those located in areas in which it is logistically
difficult to collect habitat data in the field. Many habitat studies have used data acquired by multi-spectral sensor systems such as the Landsat
Thematic Mapper (TM), due mostly to their availability and relatively high spatial resolution (30 m/pixel). The use of data collected by other sensor
systems with lower spatial resolutions but high frequency of acquisitions has largely been neglected, due to the perception that such low spatial
resolution data are too coarse for habitat mapping. In this study we compare two models using data from different satellite sensor systems for mapping
the spatial distribution of giant panda habitat in Wolong Nature Reserve, China. The first one is a four-category scheme model based on combining
forest cover (derived from a digital land cover classification of Landsat TM imagery acquired in June, 2001) with information on elevation and slope
(derived from a digital elevation model obtained from topographic maps of the study area). The second model is based on the Ecological Niche Factor
Analysis (ENFA) of a time series of weekly composites of WDRVI (Wide Dynamic Range Vegetation Index) images derived from MODIS (Moderate
Resolution Imaging Spectroradiometer — 250 m/pixel) for 2001. A series of field plots was established in the reserve during the summer—autumn
months 0f2001-2003. The locations of the plots with panda feces were used to calibrate the ENFA model and to validate the results of both models.
Results showed that the model using the seasonal variability of MODIS-WDRVI had a similar prediction success to that using Landsat TM and digital
elevation model data, albeit having a coarser spatial resolution. This suggests that the phenological characterization of the land surface provides an
appropriate environmental predictor for giant panda habitat mapping. Therefore, the information contained in remotely sensed data acquired with low
spatial resolution but high frequency of acquisitions has considerable potential for mapping the habitat distribution of wildlife species.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Giant panda; Habitat distribution models; Landsat Thematic Mapper (TM); Moderate Resolution Imaging Spectroradiometer (MODIS); Wide Dynamic
Range Vegetation Index (WDRVI); Wolong Nature Reserve (China)

1. Introduction

Deciding which areas are the most important for conservation
and management requires a precise knowledge of the locations
and spatial distribution of target species habitats (Rushton et al.,
2004). This is particularly important for both invasive (Peterson,
2005; Morisette et al., 2006) and endangered (Engler et al., 2004;
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Xu et al., 2006) species for which such knowledge can be used to
establish strategies for managing their population dynamics
(Rushton et al., 2004). It is also important when the habitat of the
target species for conservation encompasses the habitat of
numerous other plant and animal species (e.g., flagship species),
therefore establishing management efforts that embrace entire
ecosystems. Such is the case of the endangered giant panda
(diluropoda melanoleuca), which not only is a global icon for
biodiversity conservation, but its habitat comprises several types
of sub-alpine forest ecosystems (Reid & Hu, 1991; Taylor &
Qin, 1993). Therefore, efforts to mitigate the habitat reduction of
this conservation icon can also promote the conservation of
entire forest ecosystems.
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The giant panda once ranged throughout most of eastern and
southern China, northern Vietnam, and northern Myanmar (Pan
et al., 2001), but it has been restricted in recent decades to six
major mountainous areas in China (Reid & Gong, 1999; Loucks
etal., 2001). The main reasons for the reduction in its geographic
range are the human-induced loss and fragmentation of broadleaf
deciduous and coniferous montane forests, as the pandas rely on
forest overstory as shelter and understory bamboo as staple food
(Schaller et al., 1985; Taylor & Qin, 1987, 1993; Reid & Hu,
1991; Reid et al., 1991; Liu et al., 1999). Conservation of this
species constitutes an enormous challenge and a national priority
for China, since there are only about 1600 individuals in the wild
(Wei et al., 2006), distributed in approximately 24 isolated popu-
lations across its current estimated geographic range (Reid &
Gong, 1999; Loucks et al., 2001; Yan, 2005).

The increasing availability of remotely sensed data acquired by
operational satellites, coupled with the development of geo-
graphic information systems (GIS) capable of storing and
analyzing the enormous amounts of spatial data generated by
remote sensing techniques, has led to their widespread use in
habitat mapping (Rushton et al., 2004). The common approach
employed for habitat mapping using remotely sensed data has
been the generation of non-hierarchical land cover classifications,
combined with ancillary information such as digital elevation
models (DEM) derived from topographic maps (e.g., Luoto et al.,
2002a,b). Most of these exercises have favored remotely sensed
data acquired at spatial resolutions similar to field observations
(e.g., 30x30 m field plots; Seto et al., 2004), with Landsat
Thematic Mapper (TM) data being the most highly used,
primarily due to their availability. Giant panda habitat mapping
has not escaped this trend since it has primarily relied on land
cover classifications of Landsat imagery using visual interpreta-
tions (MacKinnon & De Wulf, 1994; Liu et al., 2001), as well as
digital image processing techniques such as unsupervised
(Loucks et al., 2003; Vida et al., 2007) and supervised (Xu
etal., 2006) procedures. However, these techniques have not been
able to detect the spectral signature of understory bamboo cover.
That is important for characterizing the panda habitat (Linderman
et al., 2004), since the optical response of the vegetation captured
by the satellite sensor is a complex non-linear combination of
overstory and understory canopy components (Borel & Gerstl,
1994). Therefore, other digital processing techniques based on
neural networks have been proposed in order to detect the
presence of understory bamboo in Landsat imagery (Linderman et
al., 2004; Liu et al., 2004), and have been shown to modify the
areal estimates of panda habitat (Linderman et al., 2005).

Furthermore, due to the low temporal resolution of Landsat
imagery, the data used in habitat analyses usually correspond to
snapshots at particular dates and seasons that fail to recognize the
seasonal nature of habitats (Nielsen et al., 2003). Although some
studies have acknowledged that multi-temporal data enable the
classification of seasonally changing habitats, and have used two or
more Landsat scenes acquired during different seasons (e.g., Luoto
etal., 2002a,b), the phenological progression of the vegetation has
not been fully evaluated for habitat characterization and mapping.

High temporal resolution data, such as the widely available
global datasets derived from the Advanced Very High Resolution

Radiometer (AVHRR) or the Moderate Resolution Imaging
Spectroradiometer (MODIS), can be used to evaluate the pheno-
logical progression of the vegetation, and potentially constitute
suitable environmental predictors for habitat mapping (Morisette
et al.,, 2006). Nevertheless, the use of these data for habitat
mapping has been largely neglected due mostly to their coarse
spatial resolutions (250 m—1 km/pixel).

The main goal of this study is to evaluate the usefulness of
MODIS time series imagery, as compared to the traditional
classification of single-date Landsat TM imagery, for mapping the
habitat for the endangered giant pandas. The rationale for this
comparison is to examine whether data acquired with a high
temporal resolution (as that of MODIS), although acquired with
coarser spatial resolutions, can also be successfully used for
mapping wildlife habitat. In addition, in order to implement com-
prehensive sustainable management practices for the conservation
of the species such as establishment of nature reserves, buffer
areas, corridors and re-introduction sites, it is important to analyze
the distribution of existing panda habitat in its entire geographic
range. Therefore, an important consideration for the usefulness of
MODIS, as opposed to Landsat data, is their coverage of vast areas
(regional to global extents), suitable for analyzing the habitat
distribution of the entire geographic range of the species.

2. Methods
2.1. Study area

Wolong Nature Reserve is located in Sichuan Province,
southwest China (Fig. 1). It was initially established in 1963
with an area of about 200 km? and then expanded to its current
size of ca. 2000 km? in 1975 (Li et al., 2003). It is one of the
largest nature reserves in China designed to protect the en-
dangered giant pandas. Wolong Nature Reserve is part of the
international Man and the Biosphere Reserve Network (He
et al., 1996), protects approximately 10% of the entire wild
panda population (Zhang et al., 1997), and has drawn un-
matched domestic and international attention (Liu et al., 1999).

Situated the transition between the Sichuan Basin and the
Qinghai-Tibet Plateau, it is characterized by high mountains
and deep valleys, with elevations between 1200 m and 6250 m
(Fig. 1). Together with this strong altitudinal gradient there is a
high variation in topography, soils and climate that leads to a
diverse flora and fauna. Vegetation in the reserve is dominated
by evergreen and deciduous broadleaf forests at lower
elevations (around 1500 m) and sub-alpine coniferous forests
at higher elevations (around 2700 m; Schaller et al., 1985), with
a dense understory dominated by bamboo species such as Ba-
shania fabri and Fargesia robusta that are the staple food of the
giant pandas in the reserve (Schaller et al., 1985; Taylor & Qin,
1987, 1993; Reid & Hu, 1991; Reid et al., 1991).

2.2. Giant panda occurrence
Being a bashful species, with only around 1600 individuals

left in the wild (Wei et al., 2006) and a large distribution range,
the endangered giant pandas are extremely difficult to encounter
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Fig. 1. Location of the Wolong Nature Reserve in Sichuan Province, China. Elevation is represented in shades of gray.

in the wild. Therefore, the spatial distribution of their fecal
droppings was used as a surrogate of the species occurrence.
Fecal droppings are a straightforward indicator of the occur-
rence of the species because they are deposited frequently (an
average of 4 droppings/h) and remain visible for several months
(Schaller et al., 1985).

A total of 443 field sampling plots (30 % 30 m) were located
throughout Wolong Nature Reserve. Sampling plot location was
randomly established before the field campaigns, although se-
veral of these previously established locations were rejected in
the field due to access difficulties. Each of these plots was visited
one time during one of three field campaigns in May—August
2001, May—November 2002, and June—August 2003 (Bearer,
2005). The center of each sampling plot was geo-referenced
using a real-time differentially corrected Global Positioning
System (GPS) receiver. Panda fecal droppings’ presence, as well
as the number of droppings, was determined in each plot. Se-
venty one field sampling plots, or 16%, exhibited panda fecal
droppings (Bearer, 2005).

2.3. Landsat data

This study used cloud-free multi-spectral Landsat 5 Thematic
Mapper (TM) images (WRS-2 Path 130, Rows 38-39) acquired
on June 13, 2001 and obtained from the China Remote Sensing
Satellite Ground Station. These images were radiometrically
rectified by means of standard procedures (Markham & Barker,
1986) and geo-referenced to the WGS84 UTM coordinate system
using the nearest neighbor algorithm (Jensen, 1996). A map of
forest/non-forest in the reserve was obtained from this imagery,
via a nested unsupervised classification algorithm, with an accu-
racy of ca. 80% (Vifa et al., 2007). This algorithm involves a
preliminary unsupervised classification that sorts the multi-
spectral data into several spectral classes. These spectral classes
are then assigned to land cover classes using ground-truth field
data. Pixels in spectral classes that cannot be accurately assigned

to a land cover class are isolated, and a successive unsupervised
classification of the multi-spectral data is then applied only to
these non-assigned pixels. This algorithm was particularly useful
to extract land cover information on topographically shaded areas.
Details of the procedure are given in Viia et al. (2007).

2.4. Moderate Resolution Imaging Spectroradiometer
(MODIS) data

The MODIS/Terra surface reflectance 8-day L3 250m global
product (MOD09Q1) was used in this study. This standard pro-
duct is a composite of the previous 8 daily L2G surface re-
flectance products (MODO09GQK). This product has surface
reflectance values of two spectral bands acquired with a spatial
resolution of 250 m/pixel: red (620—670 nm) and near infrared
(841-876 nm). Data acquired between January and December of
2001 (a total of 45 images) was obtained from the National
Aeronautics and Space Administration (NASA) Earth Observa-
tion System (EOS) Data Gateway. The MODIS 8-day surface
reflectance data were used to calculate a new vegetation index that
is non-linearly related to the widely used Normalized Difference
Vegetation Index (NDVI) (Rouse et al., 1974), called the Wide
Dynamic Range Vegetation Index (WDRVI) (Gitelson, 2004):

WDRVI = [(a + 1)NDVI + (o0 — 1)]/[(« — 1)NDVI + (o + 1)]
(1)

The weighting coefficient oo downweights the contribution of
the near infrared band in the NDVI formulation, making it
comparable to that of the red band (Gitelson, 2004). Following the
approach proposed by Henebry et al. (2004), an a=0.25 was
selected as the optimum for the MODIS time series dataset used in
the study.

Although the NDVTI has been used extensively as a surrogate
for vegetation biophysical characteristics such as the fraction
of absorbed photosynthetically active radiation (fAPAR; Asrar
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et al., 1992; Sellers, 1985) or the leaf area index (LAI; Myneni
et al,, 1997), it loses sensitivity at fAPAR>0.7 (Goward &
Huemmerich, 1992; Vifia & Gitelson, 2005) or LAI>2 (Myneni
et al., 1997; Gitelson et al., 2003). This sensitivity loss conceals
the spatio-temporal variability of vegetation with moderate-to-
high green biomass (Vifia et al., 2004), such as the forest
canopies with a dense understory present in the study area.
Although other vegetation indices have been proposed to cor-
rect for this sensitivity loss (Enhanced Vegetation Index, Huete
et al., 1997; Chlorophyll indices, Gitelson et al., 2005), they
require additional spectral bands. Thus, the WDRVI was se-
lected in this study because it constitutes a non-linear function
of the NDVI, therefore suitable to be used with the 250 m/pixel
near infrared and red spectral bands of the MODIS sensor. The
WDRVI has been shown to be linearly related to the fAPAR of
crop canopies (Vina & Gitelson, 2005).

Due to the extensive cloud cover observed in the study area,
with some pixels being continuously obscured by clouds for
long periods of time (e.g., more than 3 weeks), it was necessary
to apply an algorithm for the removal of cloud contaminated
data from the 2001 time series of MODIS-WDRVI imagery. For
this, the Harmonic Analysis of Time Series (HANTS) algorithm
(Roerink et al., 2000) was used. This algorithm was designed to
remove cloud contaminated pixel data from a time series of
imagery, and replace it with interpolated data obtained through a
weighted least squares curve fitting process based on harmonic
sines and cosines established in the frequency domain (Verhoef
et al., 1996). The algorithm runs an iterative process in which
the observed values are compared to the curve values. If an
observed value is significantly different from the predicted by
the curve, it is eliminated and a new curve is computed using the
remaining values. The curve fitting is, therefore, based only on
cloud-free samples (Roerink et al., 2000).

Five controlling parameters are required to be specified in
advance in order to run the HANTS algorithm (Roerink et al.,
2000): (1) Frequency numbers, which determine how many oscil-
lations are going to be used and the extent of their corresponding
period in time sample units. This parameter consists of the zero
frequency (the average pixel value of the cloud-free samples), the
base frequency (length of the entire time series) and the overtones
(multiples of the base frequency). In this study, the base frequency
was 12 months, while 3 and 6 months where the overtones used, to
account for the green-up and senescence periods, as well as the
seasonal variations of the vegetation. (2) Hi/Lo suppression flag
(SF), which indicates whether high or low values (outliers) should
be rejected during the curve fitting. In this study low WDRVI
values were rejected because cloud contamination always pro-
duces low WDRVI values. (3) Invalid data rejection threshold
(IDRT), which establishes the range of variation within which the
data are considered to be valid. A range between —0.7 and 0.6 (in
WDRVI units) was chosen, corresponding to the minimum and
maximum values observed in the time series dataset, which
includes the WDRVI values of snow and ice occurring at high
elevations. (4) Fitting error tolerance (FET), which represents the
maximum acceptable absolute deviation in the chosen direction of
the Hi/Lo suppression flag, therefore determining when the iter-
ative curve fitting process should stop. A high value will cause the
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Fig. 2. Comparison of the observed and modeled cloud-free MODIS-WDRVI
2001 time series in two pixels under different land cover types (deciduous forest
and cropland). This figure demonstrates the ability of the HANTS algorithm for
generating cloud-free time series imagery.

algorithm to remove few invalid values, thus leaving many cloud
contaminated pixels, while a low value will lead to the removal of
many observed values. A value of 0.05 (in WDRVI units) was
assigned in this study as the fitting error tolerance. (5) Degree of
overdeterminedness (DOD), which represents the minimum
number of data points that are required in the ultimate curve fit.
Since the number of valid observations must always be at least
equal to the number of parameters that describes the curve, the use
of more data points than the necessary minimum will produce a
more reliable fit. A DOD value of 13 was used.

One of the disadvantages of the HANTS algorithm is that there
are no objective rules to determine these control parameters
(Roerink etal., 2000). Therefore, the parameters used in this study
were selected after running the HANTS algorithm with different
parameter combinations and establishing the best fit, which is the
lowest root mean squared error between a cloud-free observed
sample and its modeled value, on randomly selected pixels. Fig. 2
shows the comparison of observed and modeled 2001 MODIS-
WDRVI time series for two pixels classified as (a) broadleaf
deciduous forest, and (b) cropland. Fig. 3 shows the spatial
distribution of observed and modeled MODIS-WDRVI values in
Wolong Nature Reserve during a period of widespread cloud
cover. These figures show that the HANTS algorithm is able to
reconstruct a cloud-free time series of MODIS-WDRVT to be used
for panda habitat mapping.
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Fig. 3. Comparison of the MODIS-WDRVI 8-day composite image acquired on
August 29 to September 5 (days of the year 241 to 248), which exhibited an extensive
cloud cover in almost the entire nature reserve, and its modeled (cloud-free) MODIS-
WDRUVI 8-day composite image obtained using the HANTS algorithm.

2.5. Giant panda habitat distribution modeling

Two models for establishing the distribution of giant panda
habitat using different satellite imagery were produced and com-
pared. The first one is a four-category scheme model (Liu et al.,
1999) based on the combination of three of the main biological
requirements of the species (Schaller et al., 1985; Johnson et al.,
1988; Reid etal., 1989; Ouyang et al., 1995): (1) areas under forest
cover; (2) altitudinal range between 1500 and 3750 m, with an
optimal range between 2250 and 2750 m; and (3) slopes of less
than 45°, with optimal slopes of less than 15°. Information on
forest cover was obtained from a nested unsupervised digital
classification algorithm applied to the Landsat TM imagery
acquired on June 13,2001 (Vina et al., 2007), while information on
elevation and slope were derived from a 30 m/pixel digital
elevation model (DEM) developed from 1:50,000 topographic
maps of the study area (Liu et al.,, 2001). The output of this
combination is a habitat suitability map divided into four cate-
gories (Liu et al., 2001): highly suitable, moderately suitable,
marginally suitable and unsuitable.

The second model was based on the ecological niche concept in
which a species can be quantitatively represented in terms of a
multidimensional combination of abiotic and biotic variables re-
quired for a viable population to persist (Hutchinson, 1957).
Several habitat distribution models are based on this concept, many

of which rely on presence/absence data. Because this study uses the
spatial location of fecal droppings to determine the occurrence of
the giant panda, instead of actual observations of the species, the
lack of fecal droppings in a particular sampling plot does not
necessarily imply that it constitutes an area of unsuitable habitat.
Therefore, a model based on presence/availability data is preferred.
Such models assume that the locations where the species of interest
is observed are drawn from a sample of available sites, thus, the
observed values must be a subset of what is available (Boyce et al.,
2002). One of such models was used in this study, the Ecological
Niche Factor Analysis (ENFA) developed by Perrin (1984) and
implemented in the software Biomapper (Hirzel et al., 2002, 2004).

The ENFA compares the distribution of environmental variables
of the study area against the distribution of the same variables in
the species occurrence dataset (i.e., the locations within the study
area where the species was observed), each stored as a raster layer
in a GIS. In this study, the geographic locations of the 71 field plots
with panda fecal droppings (converted to a raster format that
matched the grain and extent of the MODIS imagery) were em-
ployed in the ENFA, together with the 2001 time series (45 images)
of 250 m/pixel MODIS-WDRVI imagery used as an environmental
predictor of giant panda habitat.

The ENFA summarizes the environmental predictor variables
into a few orthogonal factors that retain most of the variance
present in the multidimensional space. The first factor is estab-
lished so that it passes through the centroid of the multidimen-
sional species occurrence dataset and the centroid of the entire (or
global) multidimensional dataset within the study area. This factor
represents how different the environmental requirements of the
species are from the average environmental conditions of the
entire study area (Hirzel et al., 2002). Successive orthogonal
factors are then calculated in order to maximize the ratio between
the variance of the entire (or global) dataset within the study area
and the variance of the species occurrence dataset. A high value of
this ratio indicates that the species has a restricted environmental
tolerance compared with the overall range of variability observed
in the study area (Hirzel et al., 2002).

A map with the distribution of panda habitat suitability index
(HSI) values (ranging from 0 to 100) was then obtained by using
the geometric mean algorithm (Hirzel & Arlettaz, 2003). This
algorithm computes, in the factorial space, the geometric mean of
all the distances between each pixel of the global dataset to all the
species observations (species dataset). This procedure was pre-
ferred because it does not assume any distribution of the species
occurrence plots, therefore it is robust when the species occur-
rence data have asymmetrical, non-Gaussian, bi- or multi-modal
distributions (Hirzel & Arlettaz, 2003). In addition, this procedure
attained the highest prediction success (see model validation
procedures below) among the algorithms tested (i.e., minimum
distance, median and harmonic mean; Hirzel et al., 2004).

2.6. Model validation

Validation of the giant panda habitat maps produced with the
two models could not be accomplished using traditional methods
based on contingency tables (e.g., user/producer errors, Kappa
coefficient, Receiver Operating Characteristic — ROC plots),
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Fig. 4. Giant panda habitat distribution across Wolong Nature Reserve in 2001,
based on the combination of forest cover (derived from Landsat TM data
acquired in June 13, 2001), elevation and slope (derived from a digital elevation
model).

because no field validation information was available for eva-
luating the species absences. Therefore, a different approach
developed by Boyce et al. (2002) was used in order to validate the
habitat suitability maps using presence-only data. For this, an
area-adjusted frequency of validation plots is obtained for each
habitat suitability class. This area-adjusted frequency corresponds
to the frequency of field validation plots that fall in each class,
divided by the frequency of locations (i.e., pixels) belonging to the
same class across the study area. An area-adjusted frequency of
1.0 indicates that the validation plots occur at rates expected by
chance (Boyce et al., 2002). A Spearman-rank correlation co-
efficient (Rs) is then calculated between the area-adjusted
frequency of validation plots in each habitat suitability class
and the habitat suitability class rank. A model with high predictive
success should have high Rs, as more observed giant panda
occurrences (i.e., plots with feces) would continually fall within
higher habitat suitability class ranks (Boyce et al., 2002).

In the case of the first model, we utilized all the 71 field
sampling plots that exhibited panda fecal droppings as validation
plots. In the case of the second model, since we also used the same
field plots to calibrate and validate the ENFA, we used a &-fold
cross-validation procedure in which the panda occurrence data
were iteratively divided into five cross-validation groups fol-
lowing a k-fold partitioning design. In this design, data are split
into k(k>2) sets, one of which is used iteratively for validation
and the remaining k—1 sets are pooled for calibration, thus
making the accuracy estimate less dependent on a single partition

(Fielding & Bell, 1997). The habitat suitability index (HSI) maps
obtained in all iterations were sorted into four bins: 0-24.9, 25—
49.9, 50-74.9 and 75-100, and the area-adjusted frequency of
cross-validation occurrences was calculated for each of the HSI
bins. This procedure was repeated 20 times using different &-fold
partitions in order to obtain a distribution of validation results.

It is important to mention that this validation technique is
particularly useful for comparing habitat maps obtained using
different models but does not provide an absolute estimation of
classification accuracy. Knowledge of the true absences would be
required for such absolute accuracy estimation. Therefore, to
provide context to the validation results, the model’s performance
was compared against that of a null model. The simplest null
model is a random map in which all factors that might structure
the spatial patterns are lacking (Gardner et al., 1987). A random
map was developed using ENFA and the 2001 time series of
250 m/pixel MODIS-WDRVI imagery together with the
geographic locations of 300 occurrence plots randomly located
throughout Wolong Nature Reserve. Under this null model any
pixel within the study area has the same probability of being
panda habitat.

2.7. Panda habitat areal estimate comparison among models

In order to compare the total areal estimates of the panda
habitat in Wolong Nature Reserve obtained with the ENFA model
and with the four-category scheme model using Landsat TM data
and a DEM, a threshold value was obtained for converting the
continuous scale of the ENFA HSI into a binary decision of
habitat and non-habitat areas. The criterion for threshold selection
was based on a parsimony rule in which a good habitat suitability
map obtained from presence-only data should predict the smallest
habitat area as possible, but that still encompasses the maximum
number of observed species occurrences (Engler et al., 2004).
Using this rule, pixels with HSI of > 15 were classified as panda
habitat, since with this threshold the total area considered as panda
habitat encompassed no less than 80% of the field plots with
panda fecal droppings.

3. Results

3.1. Four-category scheme model using Landsat TM data and
a DEM

The four-category habitat suitability map obtained from
combining forest cover (derived from Landsat TM data), elevation
and slope (derived from a DEM) is shown on Fig. 4. Total giant
panda habitat obtained with this model (combining highly suit-
able, moderately suitable and marginally suitable) corresponds to
719.5 km?, which accounts for 36% of the entire nature reserve.
The results of the validation of this model are shown in Fig. 5. A
high prediction success (Rs=0.92) was obtained with this model.

3.2. ENFA model using MODIS-WDRVI 2001 time series data

The spatial distribution of panda habitat suitability index
(HSI) values obtained from the ENFA model using the 2001
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Fig. 5. Area-adjusted frequency of validation plots for each of the habitat suitability
classes obtained using the Landsat TM imagery acquired on June 13, 2001 and a
digital elevation model. Rs corresponds to the Spearman-rank correlation coefficient.
Area-adjusted frequency values that are smaller than one indicate avoidance, while
those that are greater than one indicate preference. Values closer to one (dotted line)
indicate that the observed frequencies are not different from the random expectation.

time series of MODIS-WDRVI images is shown in Fig. 6.
Validation of this model is shown in Fig. 7. As shown in this
figure, the model performed significantly better than a random
model and its prediction success (Rs) was similar to that
obtained by the four-category scheme model using a DEM and
Landsat TM data with a higher spatial resolution (Fig. 5).
Considering that pixels with a HSI of >15 were classified as
panda habitat (parsimony rule), the total average panda habitat
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Fig. 6. Spatial distribution of giant panda habitat suitability index (HSI) values
across Wolong Nature Reserve. The map was derived from an Ecological Niche
Factor Analysis (ENFA) applied to a 2001 time series of Wide-dynamic Range
Vegetation Index (WDRVI) images obtained from the Moderate Resolution
Imaging Spectroradiometer (MODIS).
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Fig. 7. Area-adjusted frequency of cross-validation plots for each of the four
habitat suitability index (HSI) bins obtained in the ENFA model using the
MODIS-WDRVI 2001 time series data and in the null model (i.e., random map).
The area-adjusted frequency values that are smaller than one indicate avoidance,
while those that are greater than one indicate preference. Values closer to one
indicate that the observed frequency is not different from the random expectation.
The symbols represent average values and the bars represent the standard
deviations. Rs corresponds to the average Spearman-rank correlation coefficient.

area obtained corresponds to 710.8 km?, with a standard
deviation of 25.8 km?. This accounts for around 35.5% of the
entire nature reserve and is similar to that obtained by the model
using Landsat TM data and a DEM. These results show that the
information contained in the high temporal resolution MODIS
data can be used as a suitable environmental predictor of panda
habitat, despite its coarser spatial resolution.

4. Discussion

Mapping the habitat for the giant pandas using single-date
multi-spectral remotely sensed data has been challenging, due to
the fact that this habitat is characterized by the presence of
understory bamboo, which is masked by the overstory
deciduous and/or coniferous forest canopies (Liu et al., 2001;
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Fig. 8. Seasonal MODIS-WDRVI variation in 2001 of broadleaf deciduous
forest stands with similar elevation (2200-2600 m), slope (<30°) and forest
cover (>60%), but with (8 non-contiguous pixels) and without (11 non-
contiguous pixels) understory umbrella bamboo (Fargesia robusta). p-values
correspond to a two-sample #-test, after checking variance homogeneity. Error
bars correspond to 2 SEM.
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Linderman et al., 2004, 2005). Therefore, analyses of panda
habitat using remote sensing techniques should incorporate other
perspectives in addition to the spectral characterization. In this
study, the underlying hypothesis was that the phenological
progression of the vegetation constitutes a suitable environmental
predictor for giant panda habitat mapping, as it could characterize
the panda habitat in the temporal domain (in addition to the
spectral domain provided by single-date multi-spectral imagery).
To further support this hypothesis, we obtained the phenological
curves of 19 non-contiguous MODIS pixels under broadleaf
deciduous forest stands, with similar elevation (2200-2600 m),
slope (<30°) and canopy cover (>60%), but with (>70% cover)
and without (0% cover) understory bamboo (F. robusta). On
average, the broadleaf deciduous pixels with understory bamboo
have 15.8% higher WDRVI values than those without understory
bamboo (Fig. 8). In addition, these stands are significantly dif-
ferent (i.e., p-value<0.05; two-sample z-test, after checking
variance homogeneity) at three time periods: 1) February 10 to
April 30; 2) July 4 to July 28; and 3) October 16 to November 9
(Fig. 8). These differences in total canopy green biomass (as
measured by WDRVI), as well as the asynchronous phenologies
between forests with and without understory bamboo support our
logic for using high temporal resolution MODIS data for panda
habitat characterization.

Nevertheless, there is a compromise between temporal and
spatial resolutions, since the data acquired with high temporal
resolution is also acquired with coarser spatial resolutions
(AVHRR, MODIS). Therefore, issues of spatial resolution must
be addressed. In general terms, when the scale of measurement
of a variable changes, the variance of that variable also changes,
but the magnitude and type of this change depends on the
complexity of the area under study (Wiens, 1989). The spatial
complexity is dependent upon the number of separable land
surface units present within it, as well as their size and spatial
arrangement. Thus, the degree of heterogeneity that a sensor
system can detect is a function of both the complexity of the
landscape studied and the spatial resolution of the sensor system
(Woodcock & Strahler, 1987; Cao & Lam, 1997).

Since the study area has a high complexity due mostly to drastic
changes in topography, more variance is contained within a single
pixel of the MODIS sensor. Thus, deciding if a particular pixel
constitutes panda habitat under a binary decision rule (habitat
vs. non-habitat) is difficult and potentially biased. Therefore, for
coarse spatial resolution data, a fuzzy classification algorithm
based on ecological niche theory was preferred. The habitat mo-
deling algorithm selected (ENFA) is based on species occurrence
data (i.e., presence-only), therefore a formal comparison of the
results obtained using different models and remotely sensed
datasets is difficult, due to the lack of confirmed absences. None-
theless, a validation procedure specifically designed for presence-
only data showed that the ENFA model, using a coarse spatial
resolution MODIS-WDRVI time series dataset, provided a similar
prediction success as well as similar areal estimates of total panda
habitat to those obtained by the single-date, 30 m/pixel Landsat
TM dataset used with a DEM in the four-category scheme
modeling procedure. This further confirms that the seasonal
variability of the vegetation provides suitable information for

separating (among the enormous variability of conditions that
characterize the panda habitat) forests that constitute giant panda
habitat from those that do not. Therefore, datasets that characterize
the spatio-temporal variability of vegetation are also carriers of
information to be used for giant panda habitat mapping. In
addition, since only the spatio-temporal variability of vegetation
was used, it also shows that vegetation is an efficient integrator of
topographic, geographic, and climatic conditions (Peters et al.,
2002). This capability, in combination with the extensive areal
coverage of MODIS data, will aid in the generation of manage-
ment practices and conservation decisions that cover the entire
panda population in its entire geographic range, as opposed to the
localized analyses that have been applied at the level of nature
reserves (Liu et al., 2001, 2004; Vifa et al., 2007).

The approaches used in the present study could be applied
for the analyses of the habitat of many other wildlife species in
large geographic extents, as well as for establishing management
strategies that require a view of their entire geographic ranges. The
design and implementation of conservation policies that enhance
the connectivity among areas of suitable habitat for threatened or
endangered wildlife species, as well as establish buffer areas to
mitigate the influence of human activities, will benefit from the
perspective given by analyzing the entire geographic range of the
species of interest. Thus, this approach offers new insights for
biodiversity conservation.
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