

MS Oral Competition

Effects of Non-Nutritive Sweeteners on Intestinal Morphology and Systemic Immunity in Weaned Pigs

Mariah Jansen, Charlotte Ludorf, Kwangwook Kim Department of Animal Science, Michigan State University, East Lansing, MI

Outline

Introduction

- Weaning Stress & Challenges
- Non-Nutritive Sweeteners
- Objective & Hypothesis
- Results & Conclusions
- Future Directions

MICHIGAN STATE UNIVERSITY

Gastrointestinal (GI) tract development during weaning

Nursery mortality rates reach peak percentages within the first 4 weeks post-weaning (National Pork Board, 2023)

In-Feed Antibiotics During Post-Weaning (28-days)

Keagan et al., 2005

Restrictions on In-Feed Antibiotics

Fertilizer or water contaminated with resistant bacteria on crops **Contaminated products** Meat products can **Development of** can transfer antibiotictransfer antibioticantibiotic resistance resistant bacteria resistant bacteria to bacteria in farm animals humans

Potential Alternative: Non-Nutritive Sweeteners

- Artificial Sweeteners, Sugar Substitutes, High Intensity Sweeteners
- Minimal caloric value and 10 to 1000 times sweeter than sucrose (Carocho et al., 2017)
- Potential benefits in pigs:
 - **Feed Intake** (Lee et al., 2019; Zhang et al., 2020)
 - **Growth Performance** (Wang et al., 2014; Zhu et al., 2016;)
 - Modulated Immune Response & Reduction of Diarrhea (Wang et al., 2014; Lie et al., 2022; Xiong et al., 2022)

Non-Nutritive Sweeteners: Neotame & Sucralose

(Zhu et al., 2016; Lee et al., 2019 Zhang et al., 2020; Glaser et al., 2000; Daly et al., 2021)

Non-Nutritive Sweetener Preliminary Data

Growth Performance & Frequency of Diarrhea

Preliminary Data: Non-Nutritive Sweeteners

	Body Weight	Average Daily Gain	Average Daily Feed Intake	Frequency of Diarrhea
Sucralose	\uparrow	1	1	\downarrow
Neotame	1	1	1	\downarrow
Carbadox	1	\uparrow	\uparrow	\downarrow

(Jansen et al., 2024)

Objective

Investigate the effects of non-nutritive sweeteners, sucralose and neotame, on small intestinal development and inflammatory responses

Hypothesis

We hypothesize that these sweeteners will positively influence small intestinal morphology and systemic immunity furthering our understanding of the underlying mechanisms

Experimental Design & Treatments

Randomized Complete Block

Design (Blocks: BW and Sex)

- 288 Weanling Pigs (6 pigs/pen, 4 treatments)
 - Average Body Weight: 6.21 \pm 0.45 kg
 - Weaning Age: 21 ± 1 days old
- 28-day Feeding Program

Nursery basal diet as control (CON)

CON + 150 mg/kg of Sucralose (SCL)

CON + 30 mg/kg of Neotame (NEO)

CON + 50 mg/kg of Carbadox (CBX)

Experimental Timeline

Statistical Analysis

- Statistical Model:
 - Response Variable: $Y_{ijk} = \mu + D_i + B_{jk} + \epsilon_{ijk}$
 - Experimental Unit: Pen
 - Fixed effect: Diet
 - Random Effect: Block (body weight & sex)
- All data were analyzed by ANOVA using the PROC MIXED of SAS
- Significance at $P \le 0.05$ and tendency at $0.05 < P \le 0.10$

Sample Collection: Serum

Sample Collection: Small Intestine Tissue

Non-Nutritive Sweetener Intestinal Morphology Results

* Tended to increase ** Significant increase

† Tended to decrease
‡ Significant decrease

* Tended to increase ** Significant increase

Villi Width, µm

* Tended to increase
** Significant increase
‡ Significant decrease

Villi Height:Crypt Depth

Non-Nutritive Sweetener ELISA Results

* Tended to increase ** Significant increase

MICHIGAN STATE UNIVERSITY

† Tended to decrease
‡ Significant decrease

Summary: During the First 2-Weeks Post-Weaning...

On-Going Research

Gene Expression of the Jejunal and Ileal Mucosa

Analysis of the Gut Microbiota

Acknowledgement

MSU Animal Nutrition, Health, and Physiology Laboratory East Lansing, MI

